Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1998 Mar;7(3):573–579. doi: 10.1002/pro.5560070305

Solvation studies of DMP323 and A76928 bound to HIV protease: analysis of water sites using grand canonical Monte Carlo simulations.

T J Marrone 1, H Resat 1, C N Hodge 1, C H Chang 1, J A McCammon 1
PMCID: PMC2143944  PMID: 9541388

Abstract

We examine the water solvation of the complex of the inhibitors DMP323 and A76928 bound to HIV-1 protease through grand canonical Monte Carlo simulations, and demonstrate the ability of this method to reproduce crystal waters and effectively predict water positions not seen in the DMP323 or A76928 structures. The simulation method is useful for identifying structurally important waters that may not be resolved in the crystal structures. It can also be used to identify water positions around a putative drug candidate docked into a binding pocket. Knowledge of these water positions may be useful in designing drugs to utilize them as bridging groups or displace them in the binding pocket. In addition, the method should be useful in finding water sites in homology models of enzymes for which crystal structures are unavailable.

Full Text

The Full Text of this article is available as a PDF (5.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ala P. J., Huston E. E., Klabe R. M., McCabe D. D., Duke J. L., Rizzo C. J., Korant B. D., DeLoskey R. J., Lam P. Y., Hodge C. N. Molecular basis of HIV-1 protease drug resistance: structural analysis of mutant proteases complexed with cyclic urea inhibitors. Biochemistry. 1997 Feb 18;36(7):1573–1580. doi: 10.1021/bi962234u. [DOI] [PubMed] [Google Scholar]
  2. Hoog S. S., Zhao B., Winborne E., Fisher S., Green D. W., DesJarlais R. L., Newlander K. A., Callahan J. F., Moore M. L., Huffman W. F. A check on rational drug design: crystal structure of a complex of human immunodeficiency virus type 1 protease with a novel gamma-turn mimetic inhibitor. J Med Chem. 1995 Aug 18;38(17):3246–3252. doi: 10.1021/jm00017a008. [DOI] [PubMed] [Google Scholar]
  3. Jhoti H., Singh O. M., Weir M. P., Cooke R., Murray-Rust P., Wonacott A. X-ray crystallographic studies of a series of penicillin-derived asymmetric inhibitors of HIV-1 protease. Biochemistry. 1994 Jul 19;33(28):8417–8427. doi: 10.1021/bi00194a005. [DOI] [PubMed] [Google Scholar]
  4. Lam P. Y., Jadhav P. K., Eyermann C. J., Hodge C. N., Ru Y., Bacheler L. T., Meek J. L., Otto M. J., Rayner M. M., Wong Y. N. Rational design of potent, bioavailable, nonpeptide cyclic ureas as HIV protease inhibitors. Science. 1994 Jan 21;263(5145):380–384. doi: 10.1126/science.8278812. [DOI] [PubMed] [Google Scholar]
  5. Lounnas V., Pettitt B. M., Phillips G. N., Jr A global model of the protein-solvent interface. Biophys J. 1994 Mar;66(3 Pt 1):601–614. doi: 10.1016/s0006-3495(94)80835-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Miller M., Schneider J., Sathyanarayana B. K., Toth M. V., Marshall G. R., Clawson L., Selk L., Kent S. B., Wlodawer A. Structure of complex of synthetic HIV-1 protease with a substrate-based inhibitor at 2.3 A resolution. Science. 1989 Dec 1;246(4934):1149–1152. doi: 10.1126/science.2686029. [DOI] [PubMed] [Google Scholar]
  7. Resat H., Marrone T. J., McCammon J. A. Enzyme-inhibitor association thermodynamics: explicit and continuum solvent studies. Biophys J. 1997 Feb;72(2 Pt 1):522–532. doi: 10.1016/s0006-3495(97)78692-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Resat H., Mezei M. Grand canonical ensemble Monte Carlo simulation of the dCpG/proflavine crystal hydrate. Biophys J. 1996 Sep;71(3):1179–1190. doi: 10.1016/S0006-3495(96)79322-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Thanki N., Rao J. K., Foundling S. I., Howe W. J., Moon J. B., Hui J. O., Tomasselli A. G., Heinrikson R. L., Thaisrivongs S., Wlodawer A. Crystal structure of a complex of HIV-1 protease with a dihydroxyethylene-containing inhibitor: comparisons with molecular modeling. Protein Sci. 1992 Aug;1(8):1061–1072. doi: 10.1002/pro.5560010811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Thompson S. K., Murthy K. H., Zhao B., Winborne E., Green D. W., Fisher S. M., DesJarlais R. L., Tomaszek T. A., Jr, Meek T. D., Gleason J. G. Rational design, synthesis, and crystallographic analysis of a hydroxyethylene-based HIV-1 protease inhibitor containing a heterocyclic P1'--P2' amide bond isostere. J Med Chem. 1994 Sep 16;37(19):3100–3107. doi: 10.1021/jm00045a015. [DOI] [PubMed] [Google Scholar]
  11. Wang Y. X., Freedberg D. I., Grzesiek S., Torchia D. A., Wingfield P. T., Kaufman J. D., Stahl S. J., Chang C. H., Hodge C. N. Mapping hydration water molecules in the HIV-1 protease/DMP323 complex in solution by NMR spectroscopy. Biochemistry. 1996 Oct 1;35(39):12694–12704. doi: 10.1021/bi9610764. [DOI] [PubMed] [Google Scholar]
  12. Wang Y. X., Freedberg D. I., Yamazaki T., Wingfield P. T., Stahl S. J., Kaufman J. D., Kiso Y., Torchia D. A. Solution NMR evidence that the HIV-1 protease catalytic aspartyl groups have different ionization states in the complex formed with the asymmetric drug KNI-272. Biochemistry. 1996 Aug 6;35(31):9945–9950. doi: 10.1021/bi961268z. [DOI] [PubMed] [Google Scholar]
  13. Wlodawer A., Erickson J. W. Structure-based inhibitors of HIV-1 protease. Annu Rev Biochem. 1993;62:543–585. doi: 10.1146/annurev.bi.62.070193.002551. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES