Abstract
The third component of complement, C3, plays a central role in activation of the classical, alternative, and lectin pathways of complement activation. Recently, we have identified a 13-residue cyclic peptide (named Compstatin) that specifically binds to C3 and inhibits complement activation. To investigate the topology and the contribution of each critical residue to the binding of Compstatin to C3, we have now determined the solution structure using 2D NMR techniques; we have also synthesized substitution analogues and used these to study the structure-function relationships involved. Finally, we have generated an ensemble of a family of solution structures of the peptide with a hybrid distance geometry-restrained simulated-annealing methodology, using distance, dihedral angle, and 3J(NH-Halpha)-coupling constant restraints. The Compstatin structure contained a type I beta-turn comprising the segment Gln5-Asp6-Trp7-Gly8. Preference for packing of the hydrophobic side chains of Val3, Val4, and Trp7 was observed. The generated structure was also analyzed for consistency using NMR parameters such as NOE connectivity patterns, 3J(NH-Halpha)-coupling constants, and chemical shifts. Analysis of Ala substitution analogues suggested that Val3, Gln5, Asp6, Trp7, and Gly8 contribute significantly to the inhibitory activity of the peptide. Substitution of Gly8 caused a 100-fold decrease in inhibitory potency. In contrast, substitution of Val4, His9, His10, and Arg11 resulted in minimal change in the activity. These findings indicate that specific side-chain interactions and the beta-turn are critical for preservation of the conformational stability of Compstatin and they might be significant for maintaining the functional activity of Compstatin.
Full Text
The Full Text of this article is available as a PDF (2.5 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Campbell A. P., McInnes C., Hodges R. S., Sykes B. D. Comparison of NMR solution structures of the receptor binding domains of Pseudomonas aeruginosa pili strains PAO, KB7, and PAK: implications for receptor binding and synthetic vaccine design. Biochemistry. 1995 Dec 19;34(50):16255–16268. doi: 10.1021/bi00050a005. [DOI] [PubMed] [Google Scholar]
- Chou P. Y., Fasman G. D. Beta-turns in proteins. J Mol Biol. 1977 Sep 15;115(2):135–175. doi: 10.1016/0022-2836(77)90094-8. [DOI] [PubMed] [Google Scholar]
- Dyson H. J., Rance M., Houghten R. A., Lerner R. A., Wright P. E. Folding of immunogenic peptide fragments of proteins in water solution. I. Sequence requirements for the formation of a reverse turn. J Mol Biol. 1988 May 5;201(1):161–200. doi: 10.1016/0022-2836(88)90446-9. [DOI] [PubMed] [Google Scholar]
- Dyson H. J., Wright P. E. Antigenic peptides. FASEB J. 1995 Jan;9(1):37–42. doi: 10.1096/fasebj.9.1.7821757. [DOI] [PubMed] [Google Scholar]
- Dyson H. J., Wright P. E. Defining solution conformations of small linear peptides. Annu Rev Biophys Biophys Chem. 1991;20:519–538. doi: 10.1146/annurev.bb.20.060191.002511. [DOI] [PubMed] [Google Scholar]
- Ehrengruber M. U., Geiser T., Deranleau D. A. Activation of human neutrophils by C3a and C5A. Comparison of the effects on shape changes, chemotaxis, secretion, and respiratory burst. FEBS Lett. 1994 Jun 13;346(2-3):181–184. doi: 10.1016/0014-5793(94)00463-3. [DOI] [PubMed] [Google Scholar]
- Ember J. A., Sanderson S. D., Taylor S. M., Kawahara M., Hugli T. E. Biologic activity of synthetic analogues of C5a anaphylatoxin. J Immunol. 1992 May 15;148(10):3165–3173. [PubMed] [Google Scholar]
- Frank M. M., Fries L. F. The role of complement in inflammation and phagocytosis. Immunol Today. 1991 Sep;12(9):322–326. doi: 10.1016/0167-5699(91)90009-I. [DOI] [PubMed] [Google Scholar]
- Gallinaro R., Cheadle W. G., Applegate K., Polk H. C., Jr The role of the complement system in trauma and infection. Surg Gynecol Obstet. 1992 May;174(5):435–440. [PubMed] [Google Scholar]
- Garrett D. S., Kuszewski J., Hancock T. J., Lodi P. J., Vuister G. W., Gronenborn A. M., Clore G. M. The impact of direct refinement against three-bond HN-C alpha H coupling constants on protein structure determination by NMR. J Magn Reson B. 1994 May;104(1):99–103. doi: 10.1006/jmrb.1994.1061. [DOI] [PubMed] [Google Scholar]
- Gillinov A. M., Redmond J. M., Winkelstein J. A., Zehr K. J., Herskowitz A., Baumgartner W. A., Cameron D. E. Complement and neutrophil activation during cardiopulmonary bypass: a study in the complement-deficient dog. Ann Thorac Surg. 1994 Feb;57(2):345–352. doi: 10.1016/0003-4975(94)90995-4. [DOI] [PubMed] [Google Scholar]
- Holers V. M., Kinoshita T., Molina H. The evolution of mouse and human complement C3-binding proteins: divergence of form but conservation of function. Immunol Today. 1992 Jun;13(6):231–236. doi: 10.1016/0167-5699(92)90160-9. [DOI] [PubMed] [Google Scholar]
- Hugli T. E. Structure and function of C3a anaphylatoxin. Curr Top Microbiol Immunol. 1990;153:181–208. doi: 10.1007/978-3-642-74977-3_10. [DOI] [PubMed] [Google Scholar]
- Johnson B. J. Complement: a host defense mechanism ready for pharmacological manipulation? J Pharm Sci. 1977 Oct;66(10):1367–1377. doi: 10.1002/jps.2600661005. [DOI] [PubMed] [Google Scholar]
- Kalli K. R., Hsu P., Fearon D. T. Therapeutic uses of recombinant complement protein inhibitors. Springer Semin Immunopathol. 1994;15(4):417–431. doi: 10.1007/BF01837368. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kilgore K. S., Friedrichs G. S., Homeister J. W., Lucchesi B. R. The complement system in myocardial ischaemia/reperfusion injury. Cardiovasc Res. 1994 Apr;28(4):437–444. doi: 10.1093/cvr/28.4.437. [DOI] [PubMed] [Google Scholar]
- Laskowski R. A., Rullmannn J. A., MacArthur M. W., Kaptein R., Thornton J. M. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR. 1996 Dec;8(4):477–486. doi: 10.1007/BF00228148. [DOI] [PubMed] [Google Scholar]
- Lee B., Richards F. M. The interpretation of protein structures: estimation of static accessibility. J Mol Biol. 1971 Feb 14;55(3):379–400. doi: 10.1016/0022-2836(71)90324-x. [DOI] [PubMed] [Google Scholar]
- Matsushita M. The lectin pathway of the complement system. Microbiol Immunol. 1996;40(12):887–893. doi: 10.1111/j.1348-0421.1996.tb01156.x. [DOI] [PubMed] [Google Scholar]
- Meri S., Pangburn M. K. A mechanism of activation of the alternative complement pathway by the classical pathway: protection of C3b from inactivation by covalent attachment to C4b. Eur J Immunol. 1990 Dec;20(12):2555–2561. doi: 10.1002/eji.1830201205. [DOI] [PubMed] [Google Scholar]
- Moore W. T. Integration of mass spectrometry into strategies for peptide synthesis. Biol Mass Spectrom. 1993 Mar;22(3):149–162. doi: 10.1002/bms.1200220303. [DOI] [PubMed] [Google Scholar]
- Morgan B. P. Clinical complementology: recent progress and future trends. Eur J Clin Invest. 1994 Apr;24(4):219–228. doi: 10.1111/j.1365-2362.1994.tb01078.x. [DOI] [PubMed] [Google Scholar]
- Nilges M. A calculation strategy for the structure determination of symmetric dimers by 1H NMR. Proteins. 1993 Nov;17(3):297–309. doi: 10.1002/prot.340170307. [DOI] [PubMed] [Google Scholar]
- Nilges M., Clore G. M., Gronenborn A. M. Determination of three-dimensional structures of proteins from interproton distance data by hybrid distance geometry-dynamical simulated annealing calculations. FEBS Lett. 1988 Mar 14;229(2):317–324. doi: 10.1016/0014-5793(88)81148-7. [DOI] [PubMed] [Google Scholar]
- Pekna M., Nilsson L., Nilsson-Ekdahl K., Nilsson U. R., Nilsson B. Evidence for iC3 generation during cardiopulmonary bypass as the result of blood-gas interaction. Clin Exp Immunol. 1993 Mar;91(3):404–409. doi: 10.1111/j.1365-2249.1993.tb05916.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rance M., Sørensen O. W., Bodenhausen G., Wagner G., Ernst R. R., Wüthrich K. Improved spectral resolution in cosy 1H NMR spectra of proteins via double quantum filtering. Biochem Biophys Res Commun. 1983 Dec 16;117(2):479–485. doi: 10.1016/0006-291x(83)91225-1. [DOI] [PubMed] [Google Scholar]
- Reynard A. M. The regulation of complement activity by pharmacologic agents. J Immunopharmacol. 1980;2(1):1–47. doi: 10.3109/08923978009026386. [DOI] [PubMed] [Google Scholar]
- Richardson J. S. The anatomy and taxonomy of protein structure. Adv Protein Chem. 1981;34:167–339. doi: 10.1016/s0065-3233(08)60520-3. [DOI] [PubMed] [Google Scholar]
- Robbins R. A., Russ W. D., Rasmussen J. K., Clayton M. M. Activation of the complement system in the adult respiratory distress syndrome. Am Rev Respir Dis. 1987 Mar;135(3):651–658. doi: 10.1164/arrd.1987.135.3.651. [DOI] [PubMed] [Google Scholar]
- Rose G. D., Gierasch L. M., Smith J. A. Turns in peptides and proteins. Adv Protein Chem. 1985;37:1–109. doi: 10.1016/s0065-3233(08)60063-7. [DOI] [PubMed] [Google Scholar]
- Sahu A., Kay B. K., Lambris J. D. Inhibition of human complement by a C3-binding peptide isolated from a phage-displayed random peptide library. J Immunol. 1996 Jul 15;157(2):884–891. [PubMed] [Google Scholar]
- Sahu A., Pangburn M. K. Investigation of mechanism-based inhibitors of complement targeting the activated thioester of human C3. Biochem Pharmacol. 1996 Mar 22;51(6):797–804. doi: 10.1016/0006-2952(95)02398-4. [DOI] [PubMed] [Google Scholar]
- Sattler M., Liang H., Nettesheim D., Meadows R. P., Harlan J. E., Eberstadt M., Yoon H. S., Shuker S. B., Chang B. S., Minn A. J. Structure of Bcl-xL-Bak peptide complex: recognition between regulators of apoptosis. Science. 1997 Feb 14;275(5302):983–986. doi: 10.1126/science.275.5302.983. [DOI] [PubMed] [Google Scholar]
- Venkatachalam C. M. Stereochemical criteria for polypeptides and proteins. V. Conformation of a system of three linked peptide units. Biopolymers. 1968 Oct;6(10):1425–1436. doi: 10.1002/bip.1968.360061006. [DOI] [PubMed] [Google Scholar]
- Wang M. W., Johnston P. S., Wright L. J., Lim S. M., White D. J. Immunofluorescent localization of pig complement component 3, regardless of the presence or absence of detectable immunoglobulins, in hyperacutely rejected heart xenografts. Histochem J. 1992 Feb;24(2):102–109. doi: 10.1007/BF01082446. [DOI] [PubMed] [Google Scholar]
- Weber C., Wider G., von Freyberg B., Traber R., Braun W., Widmer H., Wüthrich K. The NMR structure of cyclosporin A bound to cyclophilin in aqueous solution. Biochemistry. 1991 Jul 2;30(26):6563–6574. doi: 10.1021/bi00240a029. [DOI] [PubMed] [Google Scholar]
- Wilmot C. M., Thornton J. M. Analysis and prediction of the different types of beta-turn in proteins. J Mol Biol. 1988 Sep 5;203(1):221–232. doi: 10.1016/0022-2836(88)90103-9. [DOI] [PubMed] [Google Scholar]
- Wishart D. S., Sykes B. D., Richards F. M. Relationship between nuclear magnetic resonance chemical shift and protein secondary structure. J Mol Biol. 1991 Nov 20;222(2):311–333. doi: 10.1016/0022-2836(91)90214-q. [DOI] [PubMed] [Google Scholar]
- el-Lati S. G., Dahinden C. A., Church M. K. Complement peptides C3a- and C5a-induced mediator release from dissociated human skin mast cells. J Invest Dermatol. 1994 May;102(5):803–806. doi: 10.1111/1523-1747.ep12378589. [DOI] [PubMed] [Google Scholar]