Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1998 Mar;7(3):564–572. doi: 10.1002/pro.5560070304

Crystal structures of the psychrophilic alpha-amylase from Alteromonas haloplanctis in its native form and complexed with an inhibitor.

N Aghajari 1, G Feller 1, C Gerday 1, R Haser 1
PMCID: PMC2143949  PMID: 9541387

Abstract

Alteromonas haloplanctis is a bacterium that flourishes in Antarctic sea-water and it is considered as an extreme psychrophile. We have determined the crystal structures of the alpha-amylase (AHA) secreted by this bacterium, in its native state to 2.0 angstroms resolution as well as in complex with Tris to 1.85 angstroms resolution. The structure of AHA, which is the first experimentally determined three-dimensional structure of a psychrophilic enzyme, resembles those of other known alpha-amylases of various origins with a surprisingly greatest similarity to mammalian alpha-amylases. AHA contains a chloride ion which activates the hydrolytic cleavage of substrate alpha-1,4-glycosidic bonds. The chloride binding site is situated approximately 5 angstroms from the active site which is characterized by a triad of acid residues (Asp 174, Glu 200, Asp 264). These are all involved in firm binding of the Tris moiety. A reaction mechanism for substrate hydrolysis is proposed on the basis of the Tris inhibitor binding and the chloride activation. A trio of residues (Ser 303, His 337, Glu 19) having a striking spatial resemblance with serine-protease like catalytic triads was found approximately 22 angstroms from the active site. We found that this triad is equally present in other chloride dependent alpha-amylases, and suggest that it could be responsible for autoproteolytic events observed in solution for this cold adapted alpha-amylase.

Full Text

The Full Text of this article is available as a PDF (9.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aghajari N., Feller G., Gerday C., Haser R. Crystallization and preliminary X-ray diffraction studies of alpha-amylase from the antarctic psychrophile Alteromonas haloplanctis A23. Protein Sci. 1996 Oct;5(10):2128–2129. doi: 10.1002/pro.5560051021   . [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blow D. Enzymology. More of the catalytic triad. Nature. 1990 Feb 22;343(6260):694–695. doi: 10.1038/343694a0. [DOI] [PubMed] [Google Scholar]
  3. Boel E., Brady L., Brzozowski A. M., Derewenda Z., Dodson G. G., Jensen V. J., Petersen S. B., Swift H., Thim L., Woldike H. F. Calcium binding in alpha-amylases: an X-ray diffraction study at 2.1-A resolution of two enzymes from Aspergillus. Biochemistry. 1990 Jul 3;29(26):6244–6249. doi: 10.1021/bi00478a019. [DOI] [PubMed] [Google Scholar]
  4. Brady R. L., Brzozowski A. M., Derewenda Z. S., Dodson E. J., Dodson G. G. Solution of the structure of Aspergillus niger acid alpha-amylase by combined molecular replacement and multiple isomorphous replacement methods. Acta Crystallogr B. 1991 Aug 1;47(Pt 4):527–535. doi: 10.1107/s0108768191001908. [DOI] [PubMed] [Google Scholar]
  5. Brayer G. D., Luo Y., Withers S. G. The structure of human pancreatic alpha-amylase at 1.8 A resolution and comparisons with related enzymes. Protein Sci. 1995 Sep;4(9):1730–1742. doi: 10.1002/pro.5560040908. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brünger A. T., Krukowski A., Erickson J. W. Slow-cooling protocols for crystallographic refinement by simulated annealing. Acta Crystallogr A. 1990 Jul 1;46(Pt 7):585–593. doi: 10.1107/s0108767390002355. [DOI] [PubMed] [Google Scholar]
  7. Brünger A. T., Kuriyan J., Karplus M. Crystallographic R factor refinement by molecular dynamics. Science. 1987 Jan 23;235(4787):458–460. doi: 10.1126/science.235.4787.458. [DOI] [PubMed] [Google Scholar]
  8. Buisson G., Duée E., Haser R., Payan F. Three dimensional structure of porcine pancreatic alpha-amylase at 2.9 A resolution. Role of calcium in structure and activity. EMBO J. 1987 Dec 20;6(13):3909–3916. doi: 10.1002/j.1460-2075.1987.tb02731.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chen C. C., Guo W. J., Isselbacher K. J. Rat intestinal trehalase. Studies of the active site. Biochem J. 1987 Nov 1;247(3):715–724. doi: 10.1042/bj2470715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Davies G., Henrissat B. Structures and mechanisms of glycosyl hydrolases. Structure. 1995 Sep 15;3(9):853–859. doi: 10.1016/S0969-2126(01)00220-9. [DOI] [PubMed] [Google Scholar]
  11. Feller G., Bussy O., Houssier C., Gerday C. Structural and functional aspects of chloride binding to Alteromonas haloplanctis alpha-amylase. J Biol Chem. 1996 Sep 27;271(39):23836–23841. doi: 10.1074/jbc.271.39.23836. [DOI] [PubMed] [Google Scholar]
  12. Feller G., Lonhienne T., Deroanne C., Libioulle C., Van Beeumen J., Gerday C. Purification, characterization, and nucleotide sequence of the thermolabile alpha-amylase from the antarctic psychrotroph Alteromonas haloplanctis A23. J Biol Chem. 1992 Mar 15;267(8):5217–5221. [PubMed] [Google Scholar]
  13. Feller G., Payan F., Theys F., Qian M., Haser R., Gerday C. Stability and structural analysis of alpha-amylase from the antarctic psychrophile Alteromonas haloplanctis A23. Eur J Biochem. 1994 Jun 1;222(2):441–447. doi: 10.1111/j.1432-1033.1994.tb18883.x. [DOI] [PubMed] [Google Scholar]
  14. Ishikawa K., Matsui I., Honda K., Nakatani H. Substrate-dependent shift of optimum pH in porcine pancreatic alpha-amylase-catalyzed reactions. Biochemistry. 1990 Jul 31;29(30):7119–7123. doi: 10.1021/bi00482a025. [DOI] [PubMed] [Google Scholar]
  15. Janecek S. Sequence similarities and evolutionary relationships of microbial, plant and animal alpha-amylases. Eur J Biochem. 1994 Sep 1;224(2):519–524. doi: 10.1111/j.1432-1033.1994.00519.x. [DOI] [PubMed] [Google Scholar]
  16. Jiang J. S., Brünger A. T. Protein hydration observed by X-ray diffraction. Solvation properties of penicillopepsin and neuraminidase crystal structures. J Mol Biol. 1994 Oct 14;243(1):100–115. doi: 10.1006/jmbi.1994.1633. [DOI] [PubMed] [Google Scholar]
  17. Jorgensen B. B., Jorgensen O. B. Inhibition of barley malt alpha-glucosidase by Tris(hydroxymethyl)aminomethane and erythritol. Biochim Biophys Acta. 1967 Sep 12;146(1):167–172. doi: 10.1016/0005-2744(67)90083-6. [DOI] [PubMed] [Google Scholar]
  18. Kadziola A., Abe J., Svensson B., Haser R. Crystal and molecular structure of barley alpha-amylase. J Mol Biol. 1994 May 27;239(1):104–121. doi: 10.1006/jmbi.1994.1354. [DOI] [PubMed] [Google Scholar]
  19. Kersters-Hilderson H., Loontiens F. G., Claeyssens M., De Bruyne C. K. Partial purification and properties of an induced beta-D-xylosidase of Bacillus pumilus 12. Eur J Biochem. 1969 Jan;7(3):434–441. doi: 10.1111/j.1432-1033.1969.tb19628.x. [DOI] [PubMed] [Google Scholar]
  20. Koszelak S., Ng J. D., Day J., Ko T. P., Greenwood A., McPherson A. The crystallographic structure of the subtilisin protease from Penicillium cyclopium. Biochemistry. 1997 Jun 3;36(22):6597–6604. doi: 10.1021/bi963189t. [DOI] [PubMed] [Google Scholar]
  21. Larson S. B., Greenwood A., Cascio D., Day J., McPherson A. Refined molecular structure of pig pancreatic alpha-amylase at 2.1 A resolution. J Mol Biol. 1994 Feb 4;235(5):1560–1584. doi: 10.1006/jmbi.1994.1107. [DOI] [PubMed] [Google Scholar]
  22. Levitzki A., Steer M. L. The allosteric activation of mammalian alpha-amylase by chloride. Eur J Biochem. 1974 Jan 3;41(1):171–180. doi: 10.1111/j.1432-1033.1974.tb03257.x. [DOI] [PubMed] [Google Scholar]
  23. Machius M., Wiegand G., Huber R. Crystal structure of calcium-depleted Bacillus licheniformis alpha-amylase at 2.2 A resolution. J Mol Biol. 1995 Mar 3;246(4):545–559. doi: 10.1006/jmbi.1994.0106. [DOI] [PubMed] [Google Scholar]
  24. McCarter J. D., Withers S. G. Unequivocal identification of Asp-214 as the catalytic nucleophile of Saccharomyces cerevisiae alpha-glucosidase using 5-fluoro glycosyl fluorides. J Biol Chem. 1996 Mar 22;271(12):6889–6894. doi: 10.1074/jbc.271.12.6889. [DOI] [PubMed] [Google Scholar]
  25. Qian M., Haser R., Buisson G., Duée E., Payan F. The active center of a mammalian alpha-amylase. Structure of the complex of a pancreatic alpha-amylase with a carbohydrate inhibitor refined to 2.2-A resolution. Biochemistry. 1994 May 24;33(20):6284–6294. doi: 10.1021/bi00186a031. [DOI] [PubMed] [Google Scholar]
  26. Qian M., Haser R., Payan F. Structure and molecular model refinement of pig pancreatic alpha-amylase at 2.1 A resolution. J Mol Biol. 1993 Jun 5;231(3):785–799. doi: 10.1006/jmbi.1993.1326. [DOI] [PubMed] [Google Scholar]
  27. Ramasubbu N., Paloth V., Luo Y., Brayer G. D., Levine M. J. Structure of human salivary alpha-amylase at 1.6 A resolution: implications for its role in the oral cavity. Acta Crystallogr D Biol Crystallogr. 1996 May 1;52(Pt 3):435–446. doi: 10.1107/S0907444995014119. [DOI] [PubMed] [Google Scholar]
  28. Schrag J. D., Li Y. G., Wu S., Cygler M. Ser-His-Glu triad forms the catalytic site of the lipase from Geotrichum candidum. Nature. 1991 Jun 27;351(6329):761–764. doi: 10.1038/351761a0. [DOI] [PubMed] [Google Scholar]
  29. Strokopytov B., Penninga D., Rozeboom H. J., Kalk K. H., Dijkhuizen L., Dijkstra B. W. X-ray structure of cyclodextrin glycosyltransferase complexed with acarbose. Implications for the catalytic mechanism of glycosidases. Biochemistry. 1995 Feb 21;34(7):2234–2240. doi: 10.1021/bi00007a018. [DOI] [PubMed] [Google Scholar]
  30. Swift H. J., Brady L., Derewenda Z. S., Dodson E. J., Dodson G. G., Turkenburg J. P., Wilkinson A. J. Structure and molecular model refinement of Aspergillus oryzae (TAKA) alpha-amylase: an application of the simulated-annealing method. Acta Crystallogr B. 1991 Aug 1;47(Pt 4):535–544. doi: 10.1107/s0108768191001970. [DOI] [PubMed] [Google Scholar]
  31. Søgaard M., Kadziola A., Haser R., Svensson B. Site-directed mutagenesis of histidine 93, aspartic acid 180, glutamic acid 205, histidine 290, and aspartic acid 291 at the active site and tryptophan 279 at the raw starch binding site in barley alpha-amylase 1. J Biol Chem. 1993 Oct 25;268(30):22480–22484. [PubMed] [Google Scholar]
  32. Thoma J. A., Rao G. V., Brothers C., Spradlin J., Li L. H. Subsite mapping of enzymes. Correlation of product patterns with Michaelis parameters and substrate-induced strain. J Biol Chem. 1971 Sep 25;246(18):5621–5635. [PubMed] [Google Scholar]
  33. Vihinen M., Mäntsälä P. Microbial amylolytic enzymes. Crit Rev Biochem Mol Biol. 1989;24(4):329–418. doi: 10.3109/10409238909082556. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES