Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1998 Mar;7(3):611–618. doi: 10.1002/pro.5560070310

X-ray structures of three interface mutants of gammaB-crystallin from bovine eye lens.

S Palme 1, R Jaenicke 1, C Slingsby 1
PMCID: PMC2143951  PMID: 9541393

Abstract

GammaB-crystallin consists of two domains each comprising two "Greek key" motifs. Both domains fold independently, and domain interactions contribute significantly to the stability of the C-terminal domain. In a previous study (Palme S et al., 1996, Protein Sci 6:1529-1636) it was shown that Phe56 from the N-terminal domain, a residue involved in forming a hydrophobic core at the domain interface, effects the interaction of the two domains, and therefore, the stability of the C-terminal domain. Ala or Asp at position 56 drastically decreased the stability of the C-terminal domain, whereas Trp had a more moderate effect. In this article we present the X-ray structures of these interface mutants and correlate them with the stability data. The mutations do not effect the overall structure of the molecule. No structural changes are observed in the vicinity of the replaced residue, suggesting that the local structure is too rigid to allow compensations for the amino acid replacements. In the mutants gammaB-F56A and -F56D, a solvent-filled groove accessible to the bulk solvent is created by the replacement of the bulky Phe side chain. In gammaB-F56W, the pyrrole moiety of the indole ring replaces the phenyl side chain of the wild type. With the exception of gammaB-F56W, there is a good correlation between the hydrophobicity of the amino acid at position 56 according to the octanol scale and the stability of the C-terminal domain. In gammaB-F56W, the C-terminal domain is less stable than estimated from the hydrophobicity, presumably because the ring nitrogen (Nepsilon1) has no partner to form hydrogen bonds. The data suggest that the packing of hydrophobic residues in the interface core is important for domain interactions and the stability of gammaB-crystallin. Apparently, for protein stability, the same principles apply for hydrophobic cores within domains and at domain interfaces.

Full Text

The Full Text of this article is available as a PDF (3.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alber T., Sun D. P., Nye J. A., Muchmore D. C., Matthews B. W. Temperature-sensitive mutations of bacteriophage T4 lysozyme occur at sites with low mobility and low solvent accessibility in the folded protein. Biochemistry. 1987 Jun 30;26(13):3754–3758. doi: 10.1021/bi00387a002. [DOI] [PubMed] [Google Scholar]
  2. Bax B., Lapatto R., Nalini V., Driessen H., Lindley P. F., Mahadevan D., Blundell T. L., Slingsby C. X-ray analysis of beta B2-crystallin and evolution of oligomeric lens proteins. Nature. 1990 Oct 25;347(6295):776–780. doi: 10.1038/347776a0. [DOI] [PubMed] [Google Scholar]
  3. Bennett M. J., Schlunegger M. P., Eisenberg D. 3D domain swapping: a mechanism for oligomer assembly. Protein Sci. 1995 Dec;4(12):2455–2468. doi: 10.1002/pro.5560041202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Blundell T., Lindley P., Miller L., Moss D., Slingsby C., Tickle I., Turnell B., Wistow G. The molecular structure and stability of the eye lens: x-ray analysis of gamma-crystallin II. Nature. 1981 Feb 26;289(5800):771–777. doi: 10.1038/289771a0. [DOI] [PubMed] [Google Scholar]
  5. Buckle A. M., Cramer P., Fersht A. R. Structural and energetic responses to cavity-creating mutations in hydrophobic cores: observation of a buried water molecule and the hydrophilic nature of such hydrophobic cavities. Biochemistry. 1996 Apr 9;35(14):4298–4305. doi: 10.1021/bi9524676. [DOI] [PubMed] [Google Scholar]
  6. Carver J. A., Aquilina J. A., Truscott R. J. An investigation into the stability of alpha-crystallin by NMR spectroscopy; evidence for a two-domain structure. Biochim Biophys Acta. 1993 Jun 24;1164(1):22–28. doi: 10.1016/0167-4838(93)90107-3. [DOI] [PubMed] [Google Scholar]
  7. Chen Y. W., Fersht A. R., Henrick K. Crystallographic analysis of Phe-->Leu substitution in the hydrophobic core of barnase. Acta Crystallogr D Biol Crystallogr. 1995 Mar 1;51(Pt 2):220–231. doi: 10.1107/S0907444994008851. [DOI] [PubMed] [Google Scholar]
  8. Chirgadze Y. N., Driessen H. P., Wright G., Slingsby C., Hay R. E., Lindley P. F. Structure of bovine eye lens gammaD (gammaIIIb)-crystallin at 1.95 A. Acta Crystallogr D Biol Crystallogr. 1996 Jul 1;52(Pt 4):712–721. doi: 10.1107/S0907444996000352. [DOI] [PubMed] [Google Scholar]
  9. Delaye M., Tardieu A. Short-range order of crystallin proteins accounts for eye lens transparency. 1983 Mar 31-Apr 6Nature. 302(5907):415–417. doi: 10.1038/302415a0. [DOI] [PubMed] [Google Scholar]
  10. Jackson S. E., Moracci M., elMasry N., Johnson C. M., Fersht A. R. Effect of cavity-creating mutations in the hydrophobic core of chymotrypsin inhibitor 2. Biochemistry. 1993 Oct 26;32(42):11259–11269. doi: 10.1021/bi00093a001. [DOI] [PubMed] [Google Scholar]
  11. Jaenicke R. Folding and association of proteins. Prog Biophys Mol Biol. 1987;49(2-3):117–237. doi: 10.1016/0079-6107(87)90011-3. [DOI] [PubMed] [Google Scholar]
  12. Jaenicke R. Protein folding and association: in vitro studies for self-organization and targeting in the cell. Curr Top Cell Regul. 1996;34:209–314. doi: 10.1016/s0070-2137(96)80008-2. [DOI] [PubMed] [Google Scholar]
  13. Jones T. A., Zou J. Y., Cowan S. W., Kjeldgaard M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A. 1991 Mar 1;47(Pt 2):110–119. doi: 10.1107/s0108767390010224. [DOI] [PubMed] [Google Scholar]
  14. Karplus P. A. Hydrophobicity regained. Protein Sci. 1997 Jun;6(6):1302–1307. doi: 10.1002/pro.5560060618. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lee B., Richards F. M. The interpretation of protein structures: estimation of static accessibility. J Mol Biol. 1971 Feb 14;55(3):379–400. doi: 10.1016/0022-2836(71)90324-x. [DOI] [PubMed] [Google Scholar]
  16. Matsumura M., Becktel W. J., Matthews B. W. Hydrophobic stabilization in T4 lysozyme determined directly by multiple substitutions of Ile 3. Nature. 1988 Aug 4;334(6181):406–410. doi: 10.1038/334406a0. [DOI] [PubMed] [Google Scholar]
  17. Matthews B. W. Solvent content of protein crystals. J Mol Biol. 1968 Apr 28;33(2):491–497. doi: 10.1016/0022-2836(68)90205-2. [DOI] [PubMed] [Google Scholar]
  18. Matthews B. W. Studies on protein stability with T4 lysozyme. Adv Protein Chem. 1995;46:249–278. doi: 10.1016/s0065-3233(08)60337-x. [DOI] [PubMed] [Google Scholar]
  19. Nair S., Ribas de Pouplana L., Houman F., Avruch A., Shen X., Schimmel P. Species-specific tRNA recognition in relation to tRNA synthetase contact residues. J Mol Biol. 1997 May 30;269(1):1–9. doi: 10.1006/jmbi.1997.1025. [DOI] [PubMed] [Google Scholar]
  20. Najmudin S., Nalini V., Driessen H. P., Slingsby C., Blundell T. L., Moss D. S., Lindley P. F. Structure of the bovine eye lens protein gammaB(gammaII)-crystallin at 1.47 A. Acta Crystallogr D Biol Crystallogr. 1993 Mar 1;49(Pt 2):223–233. doi: 10.1107/S0907444992007601. [DOI] [PubMed] [Google Scholar]
  21. Norledge B. V., Hay R. E., Bateman O. A., Slingsby C., Driessen H. P. Towards a molecular understanding of phase separation in the lens: a comparison of the X-ray structures of two high Tc gamma-crystallins, gammaE and gammaF, with two low Tc gamma-crystallins, gammaB and gammaD. Exp Eye Res. 1997 Nov;65(5):609–630. doi: 10.1006/exer.1997.0368. [DOI] [PubMed] [Google Scholar]
  22. Pace C. N., Shirley B. A., McNutt M., Gajiwala K. Forces contributing to the conformational stability of proteins. FASEB J. 1996 Jan;10(1):75–83. doi: 10.1096/fasebj.10.1.8566551. [DOI] [PubMed] [Google Scholar]
  23. Palme S., Slingsby C., Jaenicke R. Mutational analysis of hydrophobic domain interactions in gamma B-crystallin from bovine eye lens. Protein Sci. 1997 Jul;6(7):1529–1536. doi: 10.1002/pro.5560060717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Ponnuswamy P. K. Hydrophobic characteristics of folded proteins. Prog Biophys Mol Biol. 1993;59(1):57–103. doi: 10.1016/0079-6107(93)90007-7. [DOI] [PubMed] [Google Scholar]
  25. Rosinke B., Renner C., Mayr E. M., Jaenicke R., Holak T. A. Ca2+-loaded spherulin 3a from Physarum polycephalum adopts the prototype gamma-crystallin fold in aqueous solution. J Mol Biol. 1997 Aug 29;271(4):645–655. doi: 10.1006/jmbi.1997.1184. [DOI] [PubMed] [Google Scholar]
  26. Rudolph R., Siebendritt R., Nesslaŭer G., Sharma A. K., Jaenicke R. Folding of an all-beta protein: independent domain folding in gamma II-crystallin from calf eye lens. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4625–4629. doi: 10.1073/pnas.87.12.4625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sen A. C., Walsh M. T., Chakrabarti B. An insight into domain structures and thermal stability of gamma-crystallins. J Biol Chem. 1992 Jun 15;267(17):11898–11907. [PubMed] [Google Scholar]
  28. Serrano L., Kellis J. T., Jr, Cann P., Matouschek A., Fersht A. R. The folding of an enzyme. II. Substructure of barnase and the contribution of different interactions to protein stability. J Mol Biol. 1992 Apr 5;224(3):783–804. doi: 10.1016/0022-2836(92)90562-x. [DOI] [PubMed] [Google Scholar]
  29. Steadman B. L., Trautman P. A., Lawson E. Q., Raymond M. J., Mood D. A., Thomson J. A., Middaugh C. R. A differential scanning calorimetric study of the bovine lens crystallins. Biochemistry. 1989 Dec 12;28(25):9653–9658. doi: 10.1021/bi00451a017. [DOI] [PubMed] [Google Scholar]
  30. Tsai C. J., Lin S. L., Wolfson H. J., Nussinov R. Studies of protein-protein interfaces: a statistical analysis of the hydrophobic effect. Protein Sci. 1997 Jan;6(1):53–64. doi: 10.1002/pro.5560060106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Wang D. W., Driessen H. P., Tickle I. J. MOLPACK: molecular graphics for studying the packing of protein molecules in the crystallographic unit cell. J Mol Graph. 1991 Mar;9(1):50-2, 38. doi: 10.1016/0263-7855(91)80057-7. [DOI] [PubMed] [Google Scholar]
  32. Wistow G. J., Piatigorsky J. Lens crystallins: the evolution and expression of proteins for a highly specialized tissue. Annu Rev Biochem. 1988;57:479–504. doi: 10.1146/annurev.bi.57.070188.002403. [DOI] [PubMed] [Google Scholar]
  33. de Jong W. W., Hendriks W., Mulders J. W., Bloemendal H. Evolution of eye lens crystallins: the stress connection. Trends Biochem Sci. 1989 Sep;14(9):365–368. doi: 10.1016/0968-0004(89)90009-1. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES