Abstract
The exchange of a large number of amide hydrogens in oxidized equine cytochrome c was measured by NMR and compared with structural parameters. Hydrogens known to exchange through local structural fluctuations and through larger unfolding reactions were separately considered. All hydrogens protected from exchange by factors greater than 10(3) are in defined H-bonds, and almost all H-bonded hydrogens including those at the protein surface were measured to exchange slowly. H-exchange rates do not correlate with H-bond strength (length) or crystallographic B factors. It appears that the transient structural fluctuation necessary to bring an exchangeable hydrogen into H-bonding contact with the H-exchange catalyst (OH(-)-ion) involves a fairly large separation of the H-bond donor and acceptor, several angstroms at least, and therefore depends on the relative resistance to distortion of immediately neighboring structure. Accordingly, H-exchange by way of local fluctuational pathways tends to be very slow for hydrogens that are neighbored by tightly anchored structure and for hydrogens that are well buried. The slowing of buried hydrogens may also reflect the need for additional motions that allow solvent access once the protecting H-bond is separated, although it is noteworthy that burial in a protein like cytochrome c does not exceed 4 angstroms. When local fluctuational pathways are very slow, exchange can become dominated by a different category of larger, cooperative, segmental unfolding reactions reaching up to global unfolding.
Full Text
The Full Text of this article is available as a PDF (729.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bai Y., Englander S. W. Future directions in folding: the multi-state nature of protein structure. Proteins. 1996 Feb;24(2):145–151. doi: 10.1002/(SICI)1097-0134(199602)24:2<145::AID-PROT1>3.0.CO;2-I. [DOI] [PubMed] [Google Scholar]
- Bai Y., Milne J. S., Mayne L., Englander S. W. Protein stability parameters measured by hydrogen exchange. Proteins. 1994 Sep;20(1):4–14. doi: 10.1002/prot.340200103. [DOI] [PubMed] [Google Scholar]
- Berghuis A. M., Guillemette J. G., McLendon G., Sherman F., Smith M., Brayer G. D. The role of a conserved internal water molecule and its associated hydrogen bond network in cytochrome c. J Mol Biol. 1994 Feb 25;236(3):786–799. doi: 10.1006/jmbi.1994.1189. [DOI] [PubMed] [Google Scholar]
- Chamberlain A. K., Handel T. M., Marqusee S. Detection of rare partially folded molecules in equilibrium with the native conformation of RNaseH. Nat Struct Biol. 1996 Sep;3(9):782–787. doi: 10.1038/nsb0996-782. [DOI] [PubMed] [Google Scholar]
- Clarke J., Hounslow A. M., Fersht A. R. Disulfide mutants of barnase. II: Changes in structure and local stability identified by hydrogen exchange. J Mol Biol. 1995 Oct 27;253(3):505–513. doi: 10.1006/jmbi.1995.0569. [DOI] [PubMed] [Google Scholar]
- Connolly M. L. Solvent-accessible surfaces of proteins and nucleic acids. Science. 1983 Aug 19;221(4612):709–713. doi: 10.1126/science.6879170. [DOI] [PubMed] [Google Scholar]
- Englander S. W., Sosnick T. R., Englander J. J., Mayne L. Mechanisms and uses of hydrogen exchange. Curr Opin Struct Biol. 1996 Feb;6(1):18–23. doi: 10.1016/s0959-440x(96)80090-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goodman E. M., Kim P. S. Periodicity of amide proton exchange rates in a coiled-coil leucine zipper peptide. Biochemistry. 1991 Dec 17;30(50):11615–11620. doi: 10.1021/bi00114a002. [DOI] [PubMed] [Google Scholar]
- Gooley P. R., Caffrey M. S., Cusanovich M. A., MacKenzie N. E. Mutations Pro----Ala-35 and Tyr----Phe-75 of Rhodobacter capsulatus ferrocytochrome c2 affect protein backbone dynamics: measurements of individual amide proton exchange rate constants by 1H-15N HMQC spectroscopy. Biochemistry. 1992 Jan 21;31(2):443–450. doi: 10.1021/bi00117a020. [DOI] [PubMed] [Google Scholar]
- Gooley P. R., Zhao D., MacKenzie N. E. Comparison of amide proton exchange in reduced and oxidized Rhodobacter capsulatus cytochrome c2: a 1H-15N NMR study. J Biomol NMR. 1991 Jul;1(2):145–154. doi: 10.1007/BF01877226. [DOI] [PubMed] [Google Scholar]
- Hiller R., Zhou Z. H., Adams M. W., Englander S. W. Stability and dynamics in a hyperthermophilic protein with melting temperature close to 200 degrees C. Proc Natl Acad Sci U S A. 1997 Oct 14;94(21):11329–11332. doi: 10.1073/pnas.94.21.11329. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hilser V. J., Freire E. Structure-based calculation of the equilibrium folding pathway of proteins. Correlation with hydrogen exchange protection factors. J Mol Biol. 1996 Oct 11;262(5):756–772. doi: 10.1006/jmbi.1996.0550. [DOI] [PubMed] [Google Scholar]
- Honig B., Yang A. S. Free energy balance in protein folding. Adv Protein Chem. 1995;46:27–58. doi: 10.1016/s0065-3233(08)60331-9. [DOI] [PubMed] [Google Scholar]
- Hvidt A., Nielsen S. O. Hydrogen exchange in proteins. Adv Protein Chem. 1966;21:287–386. doi: 10.1016/s0065-3233(08)60129-1. [DOI] [PubMed] [Google Scholar]
- Jeng M. F., Englander S. W. Stable submolecular folding units in a non-compact form of cytochrome c. J Mol Biol. 1991 Oct 5;221(3):1045–1061. doi: 10.1016/0022-2836(91)80191-v. [DOI] [PubMed] [Google Scholar]
- Kiefhaber T., Baldwin R. L. Kinetics of hydrogen bond breakage in the process of unfolding of ribonuclease A measured by pulsed hydrogen exchange. Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):2657–2661. doi: 10.1073/pnas.92.7.2657. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kragelund B. B., Knudsen J., Poulsen F. M. Local perturbations by ligand binding of hydrogen deuterium exchange kinetics in a four-helix bundle protein, acyl coenzyme A binding protein (ACBP). J Mol Biol. 1995 Jul 28;250(5):695–706. doi: 10.1006/jmbi.1995.0409. [DOI] [PubMed] [Google Scholar]
- Loh S. N., Rohl C. A., Kiefhaber T., Baldwin R. L. A general two-process model describes the hydrogen exchange behavior of RNase A in unfolding conditions. Proc Natl Acad Sci U S A. 1996 Mar 5;93(5):1982–1987. doi: 10.1073/pnas.93.5.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marmorino J. L., Auld D. S., Betz S. F., Doyle D. F., Young G. B., Pielak G. J. Amide proton exchange rates of oxidized and reduced Saccharomyces cerevisiae iso-1-cytochrome c. Protein Sci. 1993 Nov;2(11):1966–1974. doi: 10.1002/pro.5560021118. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Molday R. S., Englander S. W., Kallen R. G. Primary structure effects on peptide group hydrogen exchange. Biochemistry. 1972 Jan 18;11(2):150–158. doi: 10.1021/bi00752a003. [DOI] [PubMed] [Google Scholar]
- Orban J., Alexander P., Bryan P., Khare D. Assessment of stability differences in the protein G B1 and B2 domains from hydrogen-deuterium exchange: comparison with calorimetric data. Biochemistry. 1995 Nov 21;34(46):15291–15300. doi: 10.1021/bi00046a038. [DOI] [PubMed] [Google Scholar]
- Pedersen T. G., Thomsen N. K., Andersen K. V., Madsen J. C., Poulsen F. M. Determination of the rate constants k1 and k2 of the Linderström-Lang model for protein amide hydrogen exchange. A study of the individual amides in hen egg-white lysozyme. J Mol Biol. 1993 Mar 20;230(2):651–660. doi: 10.1006/jmbi.1993.1176. [DOI] [PubMed] [Google Scholar]
- Perrett S., Clarke J., Hounslow A. M., Fersht A. R. Relationship between equilibrium amide proton exchange behavior and the folding pathway of barnase. Biochemistry. 1995 Jul 25;34(29):9288–9298. doi: 10.1021/bi00029a003. [DOI] [PubMed] [Google Scholar]
- Qi P. X., Beckman R. A., Wand A. J. Solution structure of horse heart ferricytochrome c and detection of redox-related structural changes by high-resolution 1H NMR. Biochemistry. 1996 Sep 24;35(38):12275–12286. doi: 10.1021/bi961042w. [DOI] [PubMed] [Google Scholar]
- Qi P. X., Di Stefano D. L., Wand A. J. Solution structure of horse heart ferrocytochrome c determined by high-resolution NMR and restrained simulated annealing. Biochemistry. 1994 May 31;33(21):6408–6417. doi: 10.1021/bi00187a004. [DOI] [PubMed] [Google Scholar]
- Qian H., Mayo S. L., Morton A. Protein hydrogen exchange in denaturant: quantitative analysis by a two-process model. Biochemistry. 1994 Jul 12;33(27):8167–8171. doi: 10.1021/bi00193a001. [DOI] [PubMed] [Google Scholar]
- Radford S. E., Buck M., Topping K. D., Dobson C. M., Evans P. A. Hydrogen exchange in native and denatured states of hen egg-white lysozyme. Proteins. 1992 Oct;14(2):237–248. doi: 10.1002/prot.340140210. [DOI] [PubMed] [Google Scholar]
- Rosenberg A., Chakravarti K. Studies of hydrogen exchange in proteins. I. The exchange kinetics of bovine carbonic anhydrase. J Biol Chem. 1968 Oct 10;243(19):5193–5201. [PubMed] [Google Scholar]
- Rosenberg A., Enberg J. Studies of hydrogen exchange in proteins. II. The reversible thermal unfolding of chymotrypsinogen A as studied by exchange kinetics. J Biol Chem. 1969 Nov 25;244(22):6153–6159. [PubMed] [Google Scholar]
- Timkovich R., Walker L. A., 2nd, Cai M. Hydrogen exchange in Pseudomonas cytochrome c-551. Biochim Biophys Acta. 1992 May 22;1121(1-2):8–15. doi: 10.1016/0167-4838(92)90330-g. [DOI] [PubMed] [Google Scholar]
- Wand A. J., Di Stefano D. L., Feng Y. Q., Roder H., Englander S. W. Proton resonance assignments of horse ferrocytochrome c. Biochemistry. 1989 Jan 10;28(1):186–194. doi: 10.1021/bi00427a026. [DOI] [PubMed] [Google Scholar]
- Wand A. J., Englander S. W. Protein complexes studied by NMR spectroscopy. Curr Opin Biotechnol. 1996 Aug;7(4):403–408. doi: 10.1016/s0958-1669(96)80115-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Woodward C. K., Hilton B. D. Hydrogen exchange kinetics and internal motions in proteins and nucleic acids. Annu Rev Biophys Bioeng. 1979;8:99–127. doi: 10.1146/annurev.bb.08.060179.000531. [DOI] [PubMed] [Google Scholar]
- Woodward C., Simon I., Tüchsen E. Hydrogen exchange and the dynamic structure of proteins. Mol Cell Biochem. 1982 Oct 29;48(3):135–160. doi: 10.1007/BF00421225. [DOI] [PubMed] [Google Scholar]