Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1998 Mar;7(3):545–555. doi: 10.1002/pro.5560070302

Subunit asymmetry in the three-dimensional structure of a human CuZnSOD mutant found in familial amyotrophic lateral sclerosis.

P J Hart 1, H Liu 1, M Pellegrini 1, A M Nersissian 1, E B Gralla 1, J S Valentine 1, D Eisenberg 1
PMCID: PMC2143953  PMID: 9541385

Abstract

The X-ray crystal structure of a human copper/zinc superoxide dismutase mutant (G37R CuZnSOD) found in some patients with the inherited form of Lou Gehrig's disease (FALS) has been determined to 1.9 angstroms resolution. The two SOD subunits have distinct environments in the crystal and are different in structure at their copper binding sites. One subunit (subunit[intact]) shows a four-coordinate ligand geometry of the copper ion, whereas the other subunit (subunit[broken]) shows a three-coordinate geometry of the copper ion. Also, subunit(intact) displays higher atomic displacement parameters for backbone atoms ((B) = 30 +/- 10 angstroms2) than subunit(broken) ((B) = 24 +/- 11 angstroms2). This structure is the first CuZnSOD to show large differences between the two subunits. Factors that may contribute to these differences are discussed and a possible link of a looser structure to FALS is suggested.

Full Text

The Full Text of this article is available as a PDF (6.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aoki M., Ogasawara M., Matsubara Y., Narisawa K., Nakamura S., Itoyama Y., Abe K. Familial amyotrophic lateral sclerosis (ALS) in Japan associated with H46R mutation in Cu/Zn superoxide dismutase gene: a possible new subtype of familial ALS. J Neurol Sci. 1994 Oct;126(1):77–83. doi: 10.1016/0022-510x(94)90097-3. [DOI] [PubMed] [Google Scholar]
  2. Banci L., Bertini I., Bruni B., Carloni P., Luchinat C., Mangani S., Orioli P. L., Piccioli M., Rypniewski W., Ripniewski W. X-ray, NMR and molecular dynamics studies on reduced bovine superoxide dismutase: implications for the mechanism. Biochem Biophys Res Commun. 1994 Jul 29;202(2):1088–1095. doi: 10.1006/bbrc.1994.2040. [DOI] [PubMed] [Google Scholar]
  3. Bannister J. V., Bannister W. H., Rotilio G. Aspects of the structure, function, and applications of superoxide dismutase. CRC Crit Rev Biochem. 1987;22(2):111–180. doi: 10.3109/10409238709083738. [DOI] [PubMed] [Google Scholar]
  4. Beckman J. S., Ischiropoulos H., Zhu L., van der Woerd M., Smith C., Chen J., Harrison J., Martin J. C., Tsai M. Kinetics of superoxide dismutase- and iron-catalyzed nitration of phenolics by peroxynitrite. Arch Biochem Biophys. 1992 Nov 1;298(2):438–445. doi: 10.1016/0003-9861(92)90432-v. [DOI] [PubMed] [Google Scholar]
  5. Blackburn N. J., Hasnain S. S., Binsted N., Diakun G. P., Garner C. D., Knowles P. F. An extended-X-ray-absorption-fine-structure study of bovine erythrocyte superoxide dismutase in aqueous solution. Direct evidence for three-co-ordinate Cu(I) in reduced enzyme. Biochem J. 1984 May 1;219(3):985–990. doi: 10.1042/bj2190985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Borchelt D. R., Lee M. K., Slunt H. S., Guarnieri M., Xu Z. S., Wong P. C., Brown R. H., Jr, Price D. L., Sisodia S. S., Cleveland D. W. Superoxide dismutase 1 with mutations linked to familial amyotrophic lateral sclerosis possesses significant activity. Proc Natl Acad Sci U S A. 1994 Aug 16;91(17):8292–8296. doi: 10.1073/pnas.91.17.8292. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brown R. H., Jr Superoxide dismutase in familial amyotrophic lateral sclerosis: models for gain of function. Curr Opin Neurobiol. 1995 Dec;5(6):841–846. doi: 10.1016/0959-4388(95)80114-6. [DOI] [PubMed] [Google Scholar]
  8. Bruijn L. I., Beal M. F., Becher M. W., Schulz J. B., Wong P. C., Price D. L., Cleveland D. W. Elevated free nitrotyrosine levels, but not protein-bound nitrotyrosine or hydroxyl radicals, throughout amyotrophic lateral sclerosis (ALS)-like disease implicate tyrosine nitration as an aberrant in vivo property of one familial ALS-linked superoxide dismutase 1 mutant. Proc Natl Acad Sci U S A. 1997 Jul 8;94(14):7606–7611. doi: 10.1073/pnas.94.14.7606. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cabelli D. E., Allen D., Bielski B. H., Holcman J. The interaction between Cu(I) superoxide dismutase and hydrogen peroxide. J Biol Chem. 1989 Jun 15;264(17):9967–9971. [PubMed] [Google Scholar]
  10. Carri M. T., Battistoni A., Polizio F., Desideri A., Rotilio G. Impaired copper binding by the H46R mutant of human Cu,Zn superoxide dismutase, involved in amyotrophic lateral sclerosis. FEBS Lett. 1994 Dec 19;356(2-3):314–316. doi: 10.1016/0014-5793(94)01295-4. [DOI] [PubMed] [Google Scholar]
  11. Chillemi G., Falconi M., Amadei A., Zimatore G., Desideri A., Di Nola A. The essential dynamics of Cu, Zn superoxide dismutase: suggestion of intersubunit communication. Biophys J. 1997 Aug;73(2):1007–1018. doi: 10.1016/S0006-3495(97)78134-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Cudkowicz M. E., Brown R. H., Jr An update on superoxide dismutase 1 in familial amyotrophic lateral sclerosis. J Neurol Sci. 1996 Aug;139 (Suppl):10–15. doi: 10.1016/0022-510x(96)00084-6. [DOI] [PubMed] [Google Scholar]
  13. Dal Canto M. C., Gurney M. E. Neuropathological changes in two lines of mice carrying a transgene for mutant human Cu,Zn SOD, and in mice overexpressing wild type human SOD: a model of familial amyotrophic lateral sclerosis (FALS). Brain Res. 1995 Apr 3;676(1):25–40. doi: 10.1016/0006-8993(95)00063-v. [DOI] [PubMed] [Google Scholar]
  14. Deng H. X., Hentati A., Tainer J. A., Iqbal Z., Cayabyab A., Hung W. Y., Getzoff E. D., Hu P., Herzfeldt B., Roos R. P. Amyotrophic lateral sclerosis and structural defects in Cu,Zn superoxide dismutase. Science. 1993 Aug 20;261(5124):1047–1051. doi: 10.1126/science.8351519. [DOI] [PubMed] [Google Scholar]
  15. Djinovic Carugo K., Battistoni A., Carri M. T., Polticelli F., Desideri A., Rotilio G., Coda A., Bolognesi M. Crystal structure of the cyanide-inhibited Xenopus laevis Cu,Zn superoxide dismutase at 98 K. FEBS Lett. 1994 Jul 25;349(1):93–98. doi: 10.1016/0014-5793(94)00651-2. [DOI] [PubMed] [Google Scholar]
  16. Djinovic K., Gatti G., Coda A., Antolini L., Pelosi G., Desideri A., Falconi M., Marmocchi F., Rotilio G., Bolognesi M. Crystal structure of yeast Cu,Zn superoxide dismutase. Crystallographic refinement at 2.5 A resolution. J Mol Biol. 1992 Jun 5;225(3):791–809. doi: 10.1016/0022-2836(92)90401-5. [DOI] [PubMed] [Google Scholar]
  17. Elshafey A., Lanyon W. G., Connor J. M. Identification of a new missense point mutation in exon 4 of the Cu/Zn superoxide dismutase (SOD-1) gene in a family with amyotrophic lateral sclerosis. Hum Mol Genet. 1994 Feb;3(2):363–364. doi: 10.1093/hmg/3.2.363. [DOI] [PubMed] [Google Scholar]
  18. Enayat Z. E., Orrell R. W., Claus A., Ludolph A., Bachus R., Brockmüller J., Ray-Chaudhuri K., Radunovic A., Shaw C., Wilkinson J. Two novel mutations in the gene for copper zinc superoxide dismutase in UK families with amyotrophic lateral sclerosis. Hum Mol Genet. 1995 Jul;4(7):1239–1240. doi: 10.1093/hmg/4.7.1239. [DOI] [PubMed] [Google Scholar]
  19. Epstein C. J., Avraham K. B., Lovett M., Smith S., Elroy-Stein O., Rotman G., Bry C., Groner Y. Transgenic mice with increased Cu/Zn-superoxide dismutase activity: animal model of dosage effects in Down syndrome. Proc Natl Acad Sci U S A. 1987 Nov;84(22):8044–8048. doi: 10.1073/pnas.84.22.8044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Esteban J., Rosen D. R., Bowling A. C., Sapp P., McKenna-Yasek D., O'Regan J. P., Beal M. F., Horvitz H. R., Brown R. H., Jr Identification of two novel mutations and a new polymorphism in the gene for Cu/Zn superoxide dismutase in patients with amyotrophic lateral sclerosis. Hum Mol Genet. 1994 Jun;3(6):997–998. doi: 10.1093/hmg/3.6.997. [DOI] [PubMed] [Google Scholar]
  21. Evans S. V. SETOR: hardware-lighted three-dimensional solid model representations of macromolecules. J Mol Graph. 1993 Jun;11(2):134-8, 127-8. doi: 10.1016/0263-7855(93)87009-t. [DOI] [PubMed] [Google Scholar]
  22. Falconi M., Gallimbeni R., Paci E. Dimer asymmetry in superoxide dismutase studied by molecular dynamics simulation. J Comput Aided Mol Des. 1996 Oct;10(5):490–498. doi: 10.1007/BF00124478. [DOI] [PubMed] [Google Scholar]
  23. Fielden E. M., Roberts P. B., Bray R. C., Lowe D. J., Mautner G. N., Rotilio G., Calabrese L. Mechanism of action of superoxide dismutase from pulse radiolysis and electron paramagnetic resonance. Evidence that only half the active sites function in catalysis. Biochem J. 1974 Apr;139(1):49–60. doi: 10.1042/bj1390049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Fridovich I. Superoxide dismutases. An adaptation to a paramagnetic gas. J Biol Chem. 1989 May 15;264(14):7761–7764. [PubMed] [Google Scholar]
  25. Getzoff E. D., Cabelli D. E., Fisher C. L., Parge H. E., Viezzoli M. S., Banci L., Hallewell R. A. Faster superoxide dismutase mutants designed by enhancing electrostatic guidance. Nature. 1992 Jul 23;358(6384):347–351. doi: 10.1038/358347a0. [DOI] [PubMed] [Google Scholar]
  26. Gurney M. E., Pu H., Chiu A. Y., Dal Canto M. C., Polchow C. Y., Alexander D. D., Caliendo J., Hentati A., Kwon Y. W., Deng H. X. Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science. 1994 Jun 17;264(5166):1772–1775. doi: 10.1126/science.8209258. [DOI] [PubMed] [Google Scholar]
  27. Haverkamp L. J., Appel V., Appel S. H. Natural history of amyotrophic lateral sclerosis in a database population. Validation of a scoring system and a model for survival prediction. Brain. 1995 Jun;118(Pt 3):707–719. doi: 10.1093/brain/118.3.707. [DOI] [PubMed] [Google Scholar]
  28. Ischiropoulos H., Zhu L., Chen J., Tsai M., Martin J. C., Smith C. D., Beckman J. S. Peroxynitrite-mediated tyrosine nitration catalyzed by superoxide dismutase. Arch Biochem Biophys. 1992 Nov 1;298(2):431–437. doi: 10.1016/0003-9861(92)90431-u. [DOI] [PubMed] [Google Scholar]
  29. Kitagawa Y., Tanaka N., Hata Y., Kusunoki M., Lee G. P., Katsube Y., Asada K., Aibara S., Morita Y. Three-dimensional structure of Cu,Zn-superoxide dismutase from spinach at 2.0 A resolution. J Biochem. 1991 Mar;109(3):477–485. doi: 10.1093/oxfordjournals.jbchem.a123407. [DOI] [PubMed] [Google Scholar]
  30. Klug-Roth D., Fridovich I., Rabani J. Pulse radiolytic investigations of superoxide catalyzed disproportionation. Mechanism for bovine superoxide dismutase. J Am Chem Soc. 1973 May 2;95(9):2786–2790. doi: 10.1021/ja00790a007. [DOI] [PubMed] [Google Scholar]
  31. Merritt E. A., Murphy M. E. Raster3D Version 2.0. A program for photorealistic molecular graphics. Acta Crystallogr D Biol Crystallogr. 1994 Nov 1;50(Pt 6):869–873. doi: 10.1107/S0907444994006396. [DOI] [PubMed] [Google Scholar]
  32. Murphy L. M., Strange R. W., Hasnain S. S. A critical assessment of the evidence from XAFS and crystallography for the breakage of the imidazolate bridge during catalysis in CuZn superoxide dismutase. Structure. 1997 Mar 15;5(3):371–379. doi: 10.1016/s0969-2126(97)00194-9. [DOI] [PubMed] [Google Scholar]
  33. Nishida C. R., Gralla E. B., Valentine J. S. Characterization of three yeast copper-zinc superoxide dismutase mutants analogous to those coded for in familial amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A. 1994 Oct 11;91(21):9906–9910. doi: 10.1073/pnas.91.21.9906. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Ogihara N. L., Parge H. E., Hart P. J., Weiss M. S., Goto J. J., Crane B. R., Tsang J., Slater K., Roe J. A., Valentine J. S. Unusual trigonal-planar copper configuration revealed in the atomic structure of yeast copper-zinc superoxide dismutase. Biochemistry. 1996 Feb 20;35(7):2316–2321. doi: 10.1021/bi951930b. [DOI] [PubMed] [Google Scholar]
  35. Pardo C. A., Xu Z., Borchelt D. R., Price D. L., Sisodia S. S., Cleveland D. W. Superoxide dismutase is an abundant component in cell bodies, dendrites, and axons of motor neurons and in a subset of other neurons. Proc Natl Acad Sci U S A. 1995 Feb 14;92(4):954–958. doi: 10.1073/pnas.92.4.954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Parge H. E., Hallewell R. A., Tainer J. A. Atomic structures of wild-type and thermostable mutant recombinant human Cu,Zn superoxide dismutase. Proc Natl Acad Sci U S A. 1992 Jul 1;89(13):6109–6113. doi: 10.1073/pnas.89.13.6109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Rabizadeh S., Gralla E. B., Borchelt D. R., Gwinn R., Valentine J. S., Sisodia S., Wong P., Lee M., Hahn H., Bredesen D. E. Mutations associated with amyotrophic lateral sclerosis convert superoxide dismutase from an antiapoptotic gene to a proapoptotic gene: studies in yeast and neural cells. Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):3024–3028. doi: 10.1073/pnas.92.7.3024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Ramachandran G. N., Sasisekharan V. Conformation of polypeptides and proteins. Adv Protein Chem. 1968;23:283–438. doi: 10.1016/s0065-3233(08)60402-7. [DOI] [PubMed] [Google Scholar]
  39. Reaume A. G., Elliott J. L., Hoffman E. K., Kowall N. W., Ferrante R. J., Siwek D. F., Wilcox H. M., Flood D. G., Beal M. F., Brown R. H., Jr Motor neurons in Cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury. Nat Genet. 1996 May;13(1):43–47. doi: 10.1038/ng0596-43. [DOI] [PubMed] [Google Scholar]
  40. Ripps M. E., Huntley G. W., Hof P. R., Morrison J. H., Gordon J. W. Transgenic mice expressing an altered murine superoxide dismutase gene provide an animal model of amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A. 1995 Jan 31;92(3):689–693. doi: 10.1073/pnas.92.3.689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Rotilio G., Bray R. C., Fielden E. M. A pulse radiolysis study of superoxide dismutase. Biochim Biophys Acta. 1972 May 12;268(2):605–609. doi: 10.1016/0005-2744(72)90359-2. [DOI] [PubMed] [Google Scholar]
  42. Rotilio G., Morpurgo L., Giovagnoli C., Calabrese L., Mondovì B. Studies of the metal sites of copper proteins. Symmetry of copper in bovine superoxide dismutase and its functional significance. Biochemistry. 1972 May 23;11(11):2187–2192. doi: 10.1021/bi00761a028. [DOI] [PubMed] [Google Scholar]
  43. Rypniewski W. R., Mangani S., Bruni B., Orioli P. L., Casati M., Wilson K. S. Crystal structure of reduced bovine erythrocyte superoxide dismutase at 1.9 A resolution. J Mol Biol. 1995 Aug 11;251(2):282–296. doi: 10.1006/jmbi.1995.0434. [DOI] [PubMed] [Google Scholar]
  44. Satow Y., Cohen G. H., Padlan E. A., Davies D. R. Phosphocholine binding immunoglobulin Fab McPC603. An X-ray diffraction study at 2.7 A. J Mol Biol. 1986 Aug 20;190(4):593–604. doi: 10.1016/0022-2836(86)90245-7. [DOI] [PubMed] [Google Scholar]
  45. Siddique T., Deng H. X. Genetics of amyotrophic lateral sclerosis. Hum Mol Genet. 1996;5(Spec No):1465–1470. doi: 10.1093/hmg/5.supplement_1.1465. [DOI] [PubMed] [Google Scholar]
  46. Själander A., Beckman G., Deng H. X., Iqbal Z., Tainer J. A., Siddique T. The D90A mutation results in a polymorphism of Cu,Zn superoxide dismutase that is prevalent in northern Sweden and Finland. Hum Mol Genet. 1995 Jun;4(6):1105–1108. doi: 10.1093/hmg/4.6.1105. [DOI] [PubMed] [Google Scholar]
  47. Tainer J. A., Getzoff E. D., Beem K. M., Richardson J. S., Richardson D. C. Determination and analysis of the 2 A-structure of copper, zinc superoxide dismutase. J Mol Biol. 1982 Sep 15;160(2):181–217. doi: 10.1016/0022-2836(82)90174-7. [DOI] [PubMed] [Google Scholar]
  48. Tainer J. A., Getzoff E. D., Richardson J. S., Richardson D. C. Structure and mechanism of copper, zinc superoxide dismutase. Nature. 1983 Nov 17;306(5940):284–287. doi: 10.1038/306284a0. [DOI] [PubMed] [Google Scholar]
  49. Wong P. C., Pardo C. A., Borchelt D. R., Lee M. K., Copeland N. G., Jenkins N. A., Sisodia S. S., Cleveland D. W., Price D. L. An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria. Neuron. 1995 Jun;14(6):1105–1116. doi: 10.1016/0896-6273(95)90259-7. [DOI] [PubMed] [Google Scholar]
  50. Yim H. S., Kang J. H., Chock P. B., Stadtman E. R., Yim M. B. A familial amyotrophic lateral sclerosis-associated A4V Cu, Zn-superoxide dismutase mutant has a lower Km for hydrogen peroxide. Correlation between clinical severity and the Km value. J Biol Chem. 1997 Apr 4;272(14):8861–8863. doi: 10.1074/jbc.272.14.8861. [DOI] [PubMed] [Google Scholar]
  51. de Belleroche J., Orrell R. W., Virgo L. Amyotrophic lateral sclerosis: recent advances in understanding disease mechanisms. J Neuropathol Exp Neurol. 1996 Jul;55(7):747–757. [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES