Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1998 Mar;7(3):587–599. doi: 10.1002/pro.5560070307

A proposed architecture for lecithin cholesterol acyl transferase (LCAT): identification of the catalytic triad and molecular modeling.

F Peelman 1, N Vinaimont 1, A Verhee 1, B Vanloo 1, J L Verschelde 1, C Labeur 1, S Seguret-Mace 1, N Duverger 1, G Hutchinson 1, J Vandekerckhove 1, J Tavernier 1, M Rosseneu 1
PMCID: PMC2143955  PMID: 9541390

Abstract

The enzyme cholesterol lecithin acyl transferase (LCAT) shares the Ser/Asp-Glu/His triad with lipases, esterases and proteases, but the low level of sequence homology between LCAT and these enzymes did not allow for the LCAT fold to be identified yet. We, therefore, relied upon structural homology calculations using threading methods based on alignment of the sequence against a library of solved three-dimensional protein structures, for prediction of the LCAT fold. We propose that LCAT, like lipases, belongs to the alpha/beta hydrolase fold family, and that the central domain of LCAT consists of seven conserved parallel beta-strands connected by four alpha-helices and separated by loops. We used the conserved features of this protein fold for the prediction of functional domains in LCAT, and carried out site-directed mutagenesis for the localization of the active site residues. The wild-type enzyme and mutants were expressed in Cos-1 cells. LCAT mass was measured by ELISA, and enzymatic activity was measured on recombinant HDL, on LDL and on a monomeric substrate. We identified D345 and H377 as the catalytic residues of LCAT, together with F103 and L182 as the oxyanion hole residues. In analogy with lipases, we further propose that a potential "lid" domain at residues 50-74 of LCAT might be involved in the enzyme-substrate interaction. Molecular modeling of human LCAT was carried out using human pancreatic and Candida antarctica lipases as templates. The three-dimensional model proposed here is compatible with the position of natural mutants for either LCAT deficiency or Fish-eye disease. It enables moreover prediction of the LCAT domains involved in the interaction with the phospholipid and cholesterol substrates.

Full Text

The Full Text of this article is available as a PDF (11.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. Bonelli F. S., Jonas A. Continuous fluorescence assay for lecithin:cholesterol acyltransferase using a water-soluble phosphatidylcholine. J Lipid Res. 1992 Dec;33(12):1863–1869. [PubMed] [Google Scholar]
  3. Cygler M., Schrag J. D., Sussman J. L., Harel M., Silman I., Gentry M. K., Doctor B. P. Relationship between sequence conservation and three-dimensional structure in a large family of esterases, lipases, and related proteins. Protein Sci. 1993 Mar;2(3):366–382. doi: 10.1002/pro.5560020309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Egloff M. P., Marguet F., Buono G., Verger R., Cambillau C., van Tilbeurgh H. The 2.46 A resolution structure of the pancreatic lipase-colipase complex inhibited by a C11 alkyl phosphonate. Biochemistry. 1995 Mar 7;34(9):2751–2762. doi: 10.1021/bi00009a003. [DOI] [PubMed] [Google Scholar]
  5. Fischer D., Eisenberg D. Protein fold recognition using sequence-derived predictions. Protein Sci. 1996 May;5(5):947–955. doi: 10.1002/pro.5560050516. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Francone O. L., Evangelista L., Fielding C. J. Effects of carboxy-terminal truncation on human lecithin:cholesterol acyltransferase activity. J Lipid Res. 1996 Jul;37(7):1609–1615. [PubMed] [Google Scholar]
  7. Francone O. L., Evangelista L., Fielding C. J. Lecithin-cholesterol acyltransferase: effects of mutagenesis at N-linked oligosaccharide attachment sites on acyl acceptor specificity. Biochim Biophys Acta. 1993 Feb 24;1166(2-3):301–304. doi: 10.1016/0005-2760(93)90110-u. [DOI] [PubMed] [Google Scholar]
  8. Francone O. L., Fielding C. J. Structure-function relationships in human lecithin:cholesterol acyltransferase. Site-directed mutagenesis at serine residues 181 and 216. Biochemistry. 1991 Oct 22;30(42):10074–10077. doi: 10.1021/bi00106a002. [DOI] [PubMed] [Google Scholar]
  9. Geourjon C., Deléage G. SOPM: a self-optimized method for protein secondary structure prediction. Protein Eng. 1994 Feb;7(2):157–164. doi: 10.1093/protein/7.2.157. [DOI] [PubMed] [Google Scholar]
  10. Ghosh D., Wawrzak Z., Pletnev V. Z., Li N., Kaiser R., Pangborn W., Jörnvall H., Erman M., Duax W. L. Structure of uncomplexed and linoleate-bound Candida cylindracea cholesterol esterase. Structure. 1995 Mar 15;3(3):279–288. doi: 10.1016/s0969-2126(01)00158-7. [DOI] [PubMed] [Google Scholar]
  11. Glomset J. A. The plasma lecithins:cholesterol acyltransferase reaction. J Lipid Res. 1968 Mar;9(2):155–167. [PubMed] [Google Scholar]
  12. Hansson M., Gough S. P., Brody S. S. Structure prediction and fold recognition for the ferrochelatase family of proteins. Proteins. 1997 Apr;27(4):517–522. [PubMed] [Google Scholar]
  13. Hengstschläger-Ottnad E., Kuchler K., Schneider W. J. Chicken lecithin-cholesterol acyltransferase. Molecular characterization reveals unusual structure and expression pattern. J Biol Chem. 1995 Nov 3;270(44):26139–26145. doi: 10.1074/jbc.270.44.26139. [DOI] [PubMed] [Google Scholar]
  14. Hide W. A., Chan L., Li W. H. Structure and evolution of the lipase superfamily. J Lipid Res. 1992 Feb;33(2):167–178. [PubMed] [Google Scholar]
  15. Higgins D. G., Sharp P. M. CLUSTAL: a package for performing multiple sequence alignment on a microcomputer. Gene. 1988 Dec 15;73(1):237–244. doi: 10.1016/0378-1119(88)90330-7. [DOI] [PubMed] [Google Scholar]
  16. Hoeg J. M., Vaisman B. L., Demosky S. J., Jr, Meyn S. M., Talley G. D., Hoyt R. F., Jr, Feldman S., Bérard A. M., Sakai N., Wood D. Lecithin:cholesterol acyltransferase overexpression generates hyperalpha-lipoproteinemia and a nonatherogenic lipoprotein pattern in transgenic rabbits. J Biol Chem. 1996 Feb 23;271(8):4396–4402. doi: 10.1074/jbc.271.8.4396. [DOI] [PubMed] [Google Scholar]
  17. Hubbard T., Tramontano A. Update on protein structure prediction: results of the 1995 IRBM workshop. Fold Des. 1996;1(3):R55–R63. doi: 10.1016/S1359-0278(96)00028-4. [DOI] [PubMed] [Google Scholar]
  18. Jauhiainen M., Dolphin P. J. Human plasma lecithin:cholesterol acyltransferase (LCAT). On the role of essential carboxyl groups in catalysis. Adv Exp Med Biol. 1991;285:71–75. doi: 10.1007/978-1-4684-5904-3_8. [DOI] [PubMed] [Google Scholar]
  19. Jauhiainen M., Ridgway N. D., Dolphin P. J. Aromatic boronic acids as probes of the catalytic site of human plasma lecithin-cholesterol acyltransferase. Biochim Biophys Acta. 1987 Apr 3;918(2):175–188. doi: 10.1016/0005-2760(87)90193-7. [DOI] [PubMed] [Google Scholar]
  20. Jones D. T., Miller R. T., Thornton J. M. Successful protein fold recognition by optimal sequence threading validated by rigorous blind testing. Proteins. 1995 Nov;23(3):387–397. doi: 10.1002/prot.340230312. [DOI] [PubMed] [Google Scholar]
  21. Jones D. T., Taylor W. R., Thornton J. M. A new approach to protein fold recognition. Nature. 1992 Jul 2;358(6381):86–89. doi: 10.1038/358086a0. [DOI] [PubMed] [Google Scholar]
  22. Kitabatake K., Piran U., Kamio Y., Doi Y., Nishida T. Purification of human plasma lecithin:cholesterol acyltransferase and its specificity towards the acyl acceptor. Biochim Biophys Acta. 1979 Apr 27;573(1):145–154. doi: 10.1016/0005-2760(79)90181-4. [DOI] [PubMed] [Google Scholar]
  23. Kuivenhoven J. A., Pritchard H., Hill J., Frohlich J., Assmann G., Kastelein J. The molecular pathology of lecithin:cholesterol acyltransferase (LCAT) deficiency syndromes. J Lipid Res. 1997 Feb;38(2):191–205. [PubMed] [Google Scholar]
  24. Lee Y. P., Adimoolam S., Liu M., Subbaiah P. V., Glenn K., Jonas A. Analysis of human lecithin-cholesterol acyltransferase activity by carboxyl-terminal truncation. Biochim Biophys Acta. 1997 Feb 18;1344(3):250–261. doi: 10.1016/s0005-2760(96)00149-x. [DOI] [PubMed] [Google Scholar]
  25. Lohse P., Chahrokh-Zadeh S., Lohse P., Seidel D. Human lysosomal acid lipase/cholesteryl ester hydrolase and human gastric lipase: identification of the catalytically active serine, aspartic acid, and histidine residues. J Lipid Res. 1997 May;38(5):892–903. [PubMed] [Google Scholar]
  26. Longhi S., Mannesse M., Verheij H. M., De Haas G. H., Egmond M., Knoops-Mouthuy E., Cambillau C. Crystal structure of cutinase covalently inhibited by a triglyceride analogue. Protein Sci. 1997 Feb;6(2):275–286. doi: 10.1002/pro.5560060202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Martinelle M., Holmquist M., Clausen I. G., Patkar S., Svendsen A., Hult K. The role of Glu87 and Trp89 in the lid of Humicola lanuginosa lipase. Protein Eng. 1996 Jun;9(6):519–524. doi: 10.1093/protein/9.6.519. [DOI] [PubMed] [Google Scholar]
  28. Mehta P. K., Heringa J., Argos P. A simple and fast approach to prediction of protein secondary structure from multiply aligned sequences with accuracy above 70%. Protein Sci. 1995 Dec;4(12):2517–2525. doi: 10.1002/pro.5560041208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Norin M., Haeffner F., Achour A., Norin T., Hult K. Computer modeling of substrate binding to lipases from Rhizomucor miehei, Humicola lanuginosa, and Candida rugosa. Protein Sci. 1994 Sep;3(9):1493–1503. doi: 10.1002/pro.5560030915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. O K., Hill J. S., Pritchard P. H. Role of N-linked glycosylation of lecithin:cholesterol acyltransferase in lipoprotein substrate specificity. Biochim Biophys Acta. 1995 Jan 20;1254(2):193–197. doi: 10.1016/0005-2760(94)00183-y. [DOI] [PubMed] [Google Scholar]
  31. Ollis D. L., Cheah E., Cygler M., Dijkstra B., Frolow F., Franken S. M., Harel M., Remington S. J., Silman I., Schrag J. The alpha/beta hydrolase fold. Protein Eng. 1992 Apr;5(3):197–211. doi: 10.1093/protein/5.3.197. [DOI] [PubMed] [Google Scholar]
  32. Osuna J., Soberón X., Morett E. A proposed architecture for the central domain of the bacterial enhancer-binding proteins based on secondary structure prediction and fold recognition. Protein Sci. 1997 Mar;6(3):543–555. doi: 10.1002/pro.5560060304. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Richardson J. S. The anatomy and taxonomy of protein structure. Adv Protein Chem. 1981;34:167–339. doi: 10.1016/s0065-3233(08)60520-3. [DOI] [PubMed] [Google Scholar]
  34. Rost B., Sander C. Prediction of protein secondary structure at better than 70% accuracy. J Mol Biol. 1993 Jul 20;232(2):584–599. doi: 10.1006/jmbi.1993.1413. [DOI] [PubMed] [Google Scholar]
  35. Sorci-Thomas M., Babiak J., Rudel L. L. Lecithin-cholesterol acyltransferase (LCAT) catalyzes transacylation of intact cholesteryl esters. Evidence for the partial reversal of the forward LCAT reaction. J Biol Chem. 1990 Feb 15;265(5):2665–2670. [PubMed] [Google Scholar]
  36. Vanloo B., Taveirne J., Baert J., Lorent G., Lins L., Ruyschaert J. M., Rosseneu M. LCAT activation properties of apo A-I CNBr fragments and conversion of discoidal complexes into spherical particles. Biochim Biophys Acta. 1992 Oct 30;1128(2-3):258–266. doi: 10.1016/0005-2760(92)90316-n. [DOI] [PubMed] [Google Scholar]
  37. Verhasselt P., Aert R., Voet M., Volckaert G. Twelve open reading frames revealed in the 23.6 kb segment flanking the centromere on the Saccharomyces cerevisiae chromosome XIV right arm. Yeast. 1994 Oct;10(10):1355–1361. doi: 10.1002/yea.320101013. [DOI] [PubMed] [Google Scholar]
  38. Wang J., Gebre A. K., Anderson R. A., Parks J. S. Amino acid residue 149 of lecithin:cholesterol acyltransferase determines phospholipase A2 and transacylase fatty acyl specificity. J Biol Chem. 1997 Jan 3;272(1):280–286. doi: 10.1074/jbc.272.1.280. [DOI] [PubMed] [Google Scholar]
  39. van Tilbeurgh H., Sarda L., Verger R., Cambillau C. Structure of the pancreatic lipase-procolipase complex. Nature. 1992 Sep 10;359(6391):159–162. doi: 10.1038/359159a0. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES