Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1998 Mar;7(3):765–773. doi: 10.1002/pro.5560070326

Context-dependent protein stabilization by methionine-to-leucine substitution shown in T4 lysozyme.

L A Lipscomb 1, N C Gassner 1, S D Snow 1, A M Eldridge 1, W A Baase 1, D L Drew 1, B W Matthews 1
PMCID: PMC2143956  PMID: 9541409

Abstract

The substitution of methionines with leucines within the interior of a protein is expected to increase stability both because of a more favorable solvent transfer term as well as the reduced entropic cost of holding a leucine side chain in a defined position. Together, these two terms are expected to contribute about 1.4 kcal/mol to protein stability for each Met --> Leu substitution when fully buried. At the same time, this expected beneficial effect may be offset by steric factors due to differences in the shape of leucine and methionine. To investigate the interplay between these factors, all methionines in T4 lysozyme except at the amino-terminus were individually replaced with leucine. Of these mutants, M106L and M120L have stabilities 0.5 kcal/mol higher than wild-type T4 lysozyme, while M6L is significantly destabilized (-2.8 kcal/mol). M102L, described previously, is also destabilized (-0.9 kcal/mol). Based on this limited sample it appears that methionine-to-leucine substitutions can increase protein stability but only in a situation where the methionine side chain is fully or partially buried, yet allows the introduction of the leucine without concomitant steric interference. The variants, together with methionine-to-lysine substitutions at the same sites, follow the general pattern that substitutions at rigid, internal sites tend to be most destabilizing, whereas replacements at more solvent-exposed sites are better tolerated.

Full Text

The Full Text of this article is available as a PDF (728.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alber T., Matthews B. W. Structure and thermal stability of phage T4 lysozyme. Methods Enzymol. 1987;154:511–533. doi: 10.1016/0076-6879(87)54093-9. [DOI] [PubMed] [Google Scholar]
  2. Alber T., Sun D. P., Nye J. A., Muchmore D. C., Matthews B. W. Temperature-sensitive mutations of bacteriophage T4 lysozyme occur at sites with low mobility and low solvent accessibility in the folded protein. Biochemistry. 1987 Jun 30;26(13):3754–3758. doi: 10.1021/bi00387a002. [DOI] [PubMed] [Google Scholar]
  3. Connolly M. L. Solvent-accessible surfaces of proteins and nucleic acids. Science. 1983 Aug 19;221(4612):709–713. doi: 10.1126/science.6879170. [DOI] [PubMed] [Google Scholar]
  4. Dao-pin S., Anderson D. E., Baase W. A., Dahlquist F. W., Matthews B. W. Structural and thermodynamic consequences of burying a charged residue within the hydrophobic core of T4 lysozyme. Biochemistry. 1991 Dec 10;30(49):11521–11529. doi: 10.1021/bi00113a006. [DOI] [PubMed] [Google Scholar]
  5. Eriksson A. E., Baase W. A., Matthews B. W. Similar hydrophobic replacements of Leu99 and Phe153 within the core of T4 lysozyme have different structural and thermodynamic consequences. J Mol Biol. 1993 Feb 5;229(3):747–769. doi: 10.1006/jmbi.1993.1077. [DOI] [PubMed] [Google Scholar]
  6. Eriksson A. E., Baase W. A., Zhang X. J., Heinz D. W., Blaber M., Baldwin E. P., Matthews B. W. Response of a protein structure to cavity-creating mutations and its relation to the hydrophobic effect. Science. 1992 Jan 10;255(5041):178–183. doi: 10.1126/science.1553543. [DOI] [PubMed] [Google Scholar]
  7. Estell D. A., Graycar T. P., Wells J. A. Engineering an enzyme by site-directed mutagenesis to be resistant to chemical oxidation. J Biol Chem. 1985 Jun 10;260(11):6518–6521. [PubMed] [Google Scholar]
  8. Faber H. R., Matthews B. W. A mutant T4 lysozyme displays five different crystal conformations. Nature. 1990 Nov 15;348(6298):263–266. doi: 10.1038/348263a0. [DOI] [PubMed] [Google Scholar]
  9. Gassner N. C., Baase W. A., Matthews B. W. A test of the "jigsaw puzzle" model for protein folding by multiple methionine substitutions within the core of T4 lysozyme. Proc Natl Acad Sci U S A. 1996 Oct 29;93(22):12155–12158. doi: 10.1073/pnas.93.22.12155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hamlin R. Multiwire area X-ray diffractometers. Methods Enzymol. 1985;114:416–452. doi: 10.1016/0076-6879(85)14029-2. [DOI] [PubMed] [Google Scholar]
  11. Hurley J. H., Baase W. A., Matthews B. W. Design and structural analysis of alternative hydrophobic core packing arrangements in bacteriophage T4 lysozyme. J Mol Biol. 1992 Apr 20;224(4):1143–1159. doi: 10.1016/0022-2836(92)90475-y. [DOI] [PubMed] [Google Scholar]
  12. Kunkel T. A., Roberts J. D., Zakour R. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 1987;154:367–382. doi: 10.1016/0076-6879(87)54085-x. [DOI] [PubMed] [Google Scholar]
  13. Kuroki R., Weaver L. H., Matthews B. W. A covalent enzyme-substrate intermediate with saccharide distortion in a mutant T4 lysozyme. Science. 1993 Dec 24;262(5142):2030–2033. doi: 10.1126/science.8266098. [DOI] [PubMed] [Google Scholar]
  14. Matsumura M., Matthews B. W. Control of enzyme activity by an engineered disulfide bond. Science. 1989 Feb 10;243(4892):792–794. doi: 10.1126/science.2916125. [DOI] [PubMed] [Google Scholar]
  15. Matthews B. W. Structural and genetic analysis of protein stability. Annu Rev Biochem. 1993;62:139–160. doi: 10.1146/annurev.bi.62.070193.001035. [DOI] [PubMed] [Google Scholar]
  16. Muchmore D. C., McIntosh L. P., Russell C. B., Anderson D. E., Dahlquist F. W. Expression and nitrogen-15 labeling of proteins for proton and nitrogen-15 nuclear magnetic resonance. Methods Enzymol. 1989;177:44–73. doi: 10.1016/0076-6879(89)77005-1. [DOI] [PubMed] [Google Scholar]
  17. Owen J. E., Schultz D. W., Taylor A., Smith G. R. Nucleotide sequence of the lysozyme gene of bacteriophage T4. Analysis of mutations involving repeated sequences. J Mol Biol. 1983 Apr 5;165(2):229–248. doi: 10.1016/s0022-2836(83)80255-1. [DOI] [PubMed] [Google Scholar]
  18. Pantoliano M. W., Whitlow M., Wood J. F., Dodd S. W., Hardman K. D., Rollence M. L., Bryan P. N. Large increases in general stability for subtilisin BPN' through incremental changes in the free energy of unfolding. Biochemistry. 1989 Sep 5;28(18):7205–7213. doi: 10.1021/bi00444a012. [DOI] [PubMed] [Google Scholar]
  19. Poteete A. R., Sun D. P., Nicholson H., Matthews B. W. Second-site revertants of an inactive T4 lysozyme mutant restore activity by restructuring the active site cleft. Biochemistry. 1991 Feb 5;30(5):1425–1432. doi: 10.1021/bi00219a037. [DOI] [PubMed] [Google Scholar]
  20. Spencer D. S., Stites W. E. The M32L substitution of staphylococcal nuclease: disagreement between theoretical prediction and experimental protein stability. J Mol Biol. 1996 Apr 5;257(3):497–499. doi: 10.1006/jmbi.1996.0180. [DOI] [PubMed] [Google Scholar]
  21. Yamaotsu N., Moriguchi I., Hirono S. Estimation of stabilities of staphylococcal nuclease mutants (Met32-->Ala and Met32-->Leu) using molecular dynamics/free energy perturbation. Biochim Biophys Acta. 1993 Dec 8;1203(2):243–250. doi: 10.1016/0167-4838(93)90090-e. [DOI] [PubMed] [Google Scholar]
  22. Zhang X. J., Baase W. A., Shoichet B. K., Wilson K. P., Matthews B. W. Enhancement of protein stability by the combination of point mutations in T4 lysozyme is additive. Protein Eng. 1995 Oct;8(10):1017–1022. doi: 10.1093/protein/8.10.1017. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES