Abstract
Phycoerythrin 545 from the cryptomonad alga, Rhodomonas lens, has been crystallized under a wide variety of conditions. Although this type of photosynthetic light-harvesting protein is water soluble, detergents were always required for crystallization. The crystals were typically poorly ordered, or ordered in only two dimensions. However, crystals that were well-ordered in three dimensions could be obtained under two different conditions. Both used polyethylene glycol as precipitant and the detergent lauryldimethylaminoxide, but the additives that were critical for obtaining well-ordered crystals were propionamide in one case and Cs+/Br- in the other. Crystals obtained in the presence of propionamide have the space group P2(1)2(1)2(1), with cell constants of a = 85.6 angstroms, b = 108.2 angstroms, and c = 131.0 angstroms, and contain two dimers [i.e., 2 x (alpha2beta2)] in the asymmetric unit. They show diffraction to at least 3.0 angstroms resolution. The crystals grown with Cs+/Br- are nearly isomorphous. Both types of crystals show intense, strongly polarized fluorescence, suggesting that energy transfer in the crystals is highly efficient. This should provide a basis for quantitative investigation of the role of exciton interactions in energy transfer in cryptomonad phycobiliproteins.
Full Text
The Full Text of this article is available as a PDF (5.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bode W., Schirmer T. Determination of the protein content of crystals formed by Mastigocladus laminosus C-phycocyanin, Chroomonas spec. phycocyanin-645 and modified human fibrinogen using an improved Ficoll density gradient method. Biol Chem Hoppe Seyler. 1985 Mar;366(3):287–295. doi: 10.1515/bchm3.1985.366.1.287. [DOI] [PubMed] [Google Scholar]
- Brejc K., Ficner R., Huber R., Steinbacher S. Isolation, crystallization, crystal structure analysis and refinement of allophycocyanin from the cyanobacterium Spirulina platensis at 2.3 A resolution. J Mol Biol. 1995 Jun 2;249(2):424–440. doi: 10.1006/jmbi.1995.0307. [DOI] [PubMed] [Google Scholar]
- Duerring M., Huber R., Bode W., Ruembeli R., Zuber H. Refined three-dimensional structure of phycoerythrocyanin from the cyanobacterium Mastigocladus laminosus at 2.7 A. J Mol Biol. 1990 Feb 5;211(3):633–644. doi: 10.1016/0022-2836(90)90270-v. [DOI] [PubMed] [Google Scholar]
- Eagles P. A., Johnson L. N., Joynson M. A., McMurray C. H., Gutfreund H. Subunit structure of aldolase: chemical and crystallographic evidence. J Mol Biol. 1969 Nov 14;45(3):533–544. doi: 10.1016/0022-2836(69)90310-6. [DOI] [PubMed] [Google Scholar]
- Epp O., Steigemann W., Formanek H., Huber R. Crystallographic evidence for the tetrameric subunit structure of L-asparaginase from Escherichia coli. Eur J Biochem. 1971 Jun 11;20(3):432–437. doi: 10.1111/j.1432-1033.1971.tb01410.x. [DOI] [PubMed] [Google Scholar]
- Ficner R., Lobeck K., Schmidt G., Huber R. Isolation, crystallization, crystal structure analysis and refinement of B-phycoerythrin from the red alga Porphyridium sordidum at 2.2 A resolution. J Mol Biol. 1992 Dec 5;228(3):935–950. doi: 10.1016/0022-2836(92)90876-l. [DOI] [PubMed] [Google Scholar]
- Glazer A. N. Light guides. Directional energy transfer in a photosynthetic antenna. J Biol Chem. 1989 Jan 5;264(1):1–4. [PubMed] [Google Scholar]
- Jenkins J., Hiller R. G., Speirs J., Godovac-Zimmermann J. A genomic clone encoding a cryptophyte phycoerythrin alpha-subunit. Evidence for three alpha-subunits and an N-terminal membrane transit sequence. FEBS Lett. 1990 Oct 29;273(1-2):191–194. doi: 10.1016/0014-5793(90)81082-y. [DOI] [PubMed] [Google Scholar]
- Jung J., Song P. S., Paxton R. J., Edelstein M. S., Swanson R., Hazen E. E., Jr Molecular topography of the phycocyanin photoreceptor from Chroomonas species. Biochemistry. 1980 Jan 8;19(1):24–32. doi: 10.1021/bi00542a005. [DOI] [PubMed] [Google Scholar]
- Ludwig M., Gibbs S. P. Localization of phycoerythrin at the lumenal surface of the thylakoid membrane in Rhodomonas lens. J Cell Biol. 1989 Mar;108(3):875–884. doi: 10.1083/jcb.108.3.875. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MacColl R., Lam I., Choi C. Y., Kim J. Exciton splitting in phycoerythrin 545. J Biol Chem. 1994 Oct 14;269(41):25465–25469. [PubMed] [Google Scholar]
- Matthews B. W. Solvent content of protein crystals. J Mol Biol. 1968 Apr 28;33(2):491–497. doi: 10.1016/0022-2836(68)90205-2. [DOI] [PubMed] [Google Scholar]
- Sidler W., Nutt H., Kumpf B., Frank G., Suter F., Brenzel A., Wehrmeyer W., Zuber H. The complete amino-acid sequence and the phylogenetic origin of phycocyanin-645 from the cryptophytan alga Chroomonas sp. Biol Chem Hoppe Seyler. 1990 Jul;371(7):537–547. doi: 10.1515/bchm3.1990.371.2.537. [DOI] [PubMed] [Google Scholar]
- Wedemayer G. J., Kidd D. G., Wemmer D. E., Glazer A. N. Phycobilins of cryptophycean algae. Occurrence of dihydrobiliverdin and mesobiliverdin in cryptomonad biliproteins. J Biol Chem. 1992 Apr 15;267(11):7315–7331. [PubMed] [Google Scholar]