Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1998 Mar;7(3):580–586. doi: 10.1002/pro.5560070306

Crystallization of phycoerythrin 545 of Rhodomonas lens using detergents and unusual additives.

M Becker 1, M T Stubbs 1, R Huber 1
PMCID: PMC2143966  PMID: 9541389

Abstract

Phycoerythrin 545 from the cryptomonad alga, Rhodomonas lens, has been crystallized under a wide variety of conditions. Although this type of photosynthetic light-harvesting protein is water soluble, detergents were always required for crystallization. The crystals were typically poorly ordered, or ordered in only two dimensions. However, crystals that were well-ordered in three dimensions could be obtained under two different conditions. Both used polyethylene glycol as precipitant and the detergent lauryldimethylaminoxide, but the additives that were critical for obtaining well-ordered crystals were propionamide in one case and Cs+/Br- in the other. Crystals obtained in the presence of propionamide have the space group P2(1)2(1)2(1), with cell constants of a = 85.6 angstroms, b = 108.2 angstroms, and c = 131.0 angstroms, and contain two dimers [i.e., 2 x (alpha2beta2)] in the asymmetric unit. They show diffraction to at least 3.0 angstroms resolution. The crystals grown with Cs+/Br- are nearly isomorphous. Both types of crystals show intense, strongly polarized fluorescence, suggesting that energy transfer in the crystals is highly efficient. This should provide a basis for quantitative investigation of the role of exciton interactions in energy transfer in cryptomonad phycobiliproteins.

Full Text

The Full Text of this article is available as a PDF (5.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bode W., Schirmer T. Determination of the protein content of crystals formed by Mastigocladus laminosus C-phycocyanin, Chroomonas spec. phycocyanin-645 and modified human fibrinogen using an improved Ficoll density gradient method. Biol Chem Hoppe Seyler. 1985 Mar;366(3):287–295. doi: 10.1515/bchm3.1985.366.1.287. [DOI] [PubMed] [Google Scholar]
  2. Brejc K., Ficner R., Huber R., Steinbacher S. Isolation, crystallization, crystal structure analysis and refinement of allophycocyanin from the cyanobacterium Spirulina platensis at 2.3 A resolution. J Mol Biol. 1995 Jun 2;249(2):424–440. doi: 10.1006/jmbi.1995.0307. [DOI] [PubMed] [Google Scholar]
  3. Duerring M., Huber R., Bode W., Ruembeli R., Zuber H. Refined three-dimensional structure of phycoerythrocyanin from the cyanobacterium Mastigocladus laminosus at 2.7 A. J Mol Biol. 1990 Feb 5;211(3):633–644. doi: 10.1016/0022-2836(90)90270-v. [DOI] [PubMed] [Google Scholar]
  4. Eagles P. A., Johnson L. N., Joynson M. A., McMurray C. H., Gutfreund H. Subunit structure of aldolase: chemical and crystallographic evidence. J Mol Biol. 1969 Nov 14;45(3):533–544. doi: 10.1016/0022-2836(69)90310-6. [DOI] [PubMed] [Google Scholar]
  5. Epp O., Steigemann W., Formanek H., Huber R. Crystallographic evidence for the tetrameric subunit structure of L-asparaginase from Escherichia coli. Eur J Biochem. 1971 Jun 11;20(3):432–437. doi: 10.1111/j.1432-1033.1971.tb01410.x. [DOI] [PubMed] [Google Scholar]
  6. Ficner R., Lobeck K., Schmidt G., Huber R. Isolation, crystallization, crystal structure analysis and refinement of B-phycoerythrin from the red alga Porphyridium sordidum at 2.2 A resolution. J Mol Biol. 1992 Dec 5;228(3):935–950. doi: 10.1016/0022-2836(92)90876-l. [DOI] [PubMed] [Google Scholar]
  7. Glazer A. N. Light guides. Directional energy transfer in a photosynthetic antenna. J Biol Chem. 1989 Jan 5;264(1):1–4. [PubMed] [Google Scholar]
  8. Jenkins J., Hiller R. G., Speirs J., Godovac-Zimmermann J. A genomic clone encoding a cryptophyte phycoerythrin alpha-subunit. Evidence for three alpha-subunits and an N-terminal membrane transit sequence. FEBS Lett. 1990 Oct 29;273(1-2):191–194. doi: 10.1016/0014-5793(90)81082-y. [DOI] [PubMed] [Google Scholar]
  9. Jung J., Song P. S., Paxton R. J., Edelstein M. S., Swanson R., Hazen E. E., Jr Molecular topography of the phycocyanin photoreceptor from Chroomonas species. Biochemistry. 1980 Jan 8;19(1):24–32. doi: 10.1021/bi00542a005. [DOI] [PubMed] [Google Scholar]
  10. Ludwig M., Gibbs S. P. Localization of phycoerythrin at the lumenal surface of the thylakoid membrane in Rhodomonas lens. J Cell Biol. 1989 Mar;108(3):875–884. doi: 10.1083/jcb.108.3.875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. MacColl R., Lam I., Choi C. Y., Kim J. Exciton splitting in phycoerythrin 545. J Biol Chem. 1994 Oct 14;269(41):25465–25469. [PubMed] [Google Scholar]
  12. Matthews B. W. Solvent content of protein crystals. J Mol Biol. 1968 Apr 28;33(2):491–497. doi: 10.1016/0022-2836(68)90205-2. [DOI] [PubMed] [Google Scholar]
  13. Sidler W., Nutt H., Kumpf B., Frank G., Suter F., Brenzel A., Wehrmeyer W., Zuber H. The complete amino-acid sequence and the phylogenetic origin of phycocyanin-645 from the cryptophytan alga Chroomonas sp. Biol Chem Hoppe Seyler. 1990 Jul;371(7):537–547. doi: 10.1515/bchm3.1990.371.2.537. [DOI] [PubMed] [Google Scholar]
  14. Wedemayer G. J., Kidd D. G., Wemmer D. E., Glazer A. N. Phycobilins of cryptophycean algae. Occurrence of dihydrobiliverdin and mesobiliverdin in cryptomonad biliproteins. J Biol Chem. 1992 Apr 15;267(11):7315–7331. [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES