Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1998 Mar;7(3):698–705. doi: 10.1002/pro.5560070319

Serial increase in the thermal stability of 3-isopropylmalate dehydrogenase from Bacillus subtilis by experimental evolution.

S Akanuma 1, A Yamagishi 1, N Tanaka 1, T Oshima 1
PMCID: PMC2143969  PMID: 9541402

Abstract

We improved the thermal stability of 3-isopropylmalate dehydrogenase from Bacillus subtilis by an in vivo evolutionary technique using an extreme thermophile, Thermus thermophilus, as a host cell. The leuB gene encoding B. subtilis 3-isopropylmalate dehydrogenase was integrated into the chromosome of a leuB-deficient strain of T. thermophilus. The resulting transformant showed a leucine-autotrophy at 56 degrees C but not at 61 degrees C and above. Phenotypically thermostabilized strains that can grow at 61 degrees C without leucine were isolated from spontaneous mutants. Screening temperature was stepwise increased from 61 to 66 and then to 70 degrees C and mutants that showed a leucine-autotrophic growth at 70 degrees C were obtained. DNA sequence analyses of the leuB genes from the mutant strains revealed three stepwise amino acid replacements, threonine-308 to isoleucine, isoleucine-95 to leucine, and methionine-292 to isoleucine. The mutant enzymes with these amino acid replacements were more stable against heat treatment than the wild-type enzyme. Furthermore, the triple-mutant enzyme showed significantly higher specific activity than that of the wild-type enzyme.

Full Text

The Full Text of this article is available as a PDF (850.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akanuma S., Yamagishi A., Tanaka N., Oshima T. Spontaneous tandem sequence duplications reverse the thermal stability of carboxyl-terminal modified 3-isopropylmalate dehydrogenase. J Bacteriol. 1996 Nov;178(21):6300–6304. doi: 10.1128/jb.178.21.6300-6304.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Akasako A., Haruki M., Oobatake M., Kanaya S. High resistance of Escherichia coli ribonuclease HI variant with quintuple thermostabilizing mutations to thermal denaturation, acid denaturation, and proteolytic degradation. Biochemistry. 1995 Jun 27;34(25):8115–8122. doi: 10.1021/bi00025a018. [DOI] [PubMed] [Google Scholar]
  3. Hayashi-Iwasaki Y., Numata K., Yamagishi A., Yutani K., Sakurai M., Tanaka N., Oshima T. A stable intermediate in the thermal unfolding process of a chimeric 3-isopropylmalate dehydrogenase between a thermophilic and a mesophilic enzymes. Protein Sci. 1996 Mar;5(3):511–516. doi: 10.1002/pro.5560050313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Huang W., Petrosino J., Hirsch M., Shenkin P. S., Palzkill T. Amino acid sequence determinants of beta-lactamase structure and activity. J Mol Biol. 1996 May 17;258(4):688–703. doi: 10.1006/jmbi.1996.0279. [DOI] [PubMed] [Google Scholar]
  5. Imada K., Sato M., Tanaka N., Katsube Y., Matsuura Y., Oshima T. Three-dimensional structure of a highly thermostable enzyme, 3-isopropylmalate dehydrogenase of Thermus thermophilus at 2.2 A resolution. J Mol Biol. 1991 Dec 5;222(3):725–738. doi: 10.1016/0022-2836(91)90508-4. [DOI] [PubMed] [Google Scholar]
  6. Imai R., Sekiguchi T., Nosoh Y., Tsuda K. The nucleotide sequence of 3-isopropylmalate dehydrogenase gene from Bacillus subtilis. Nucleic Acids Res. 1987 Jun 25;15(12):4988–4988. doi: 10.1093/nar/15.12.4988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kagawa Y., Nojima H., Nukiwa N., Ishizuka M., Nakajima T., Yasuhara T., Tanaka T., Oshima T. High guanine plus cytosine content in the third letter of codons of an extreme thermophile. DNA sequence of the isopropylmalate dehydrogenase of Thermus thermophilus. J Biol Chem. 1984 Mar 10;259(5):2956–2960. [PubMed] [Google Scholar]
  8. Kellis J. T., Jr, Nyberg K., Fersht A. R. Energetics of complementary side-chain packing in a protein hydrophobic core. Biochemistry. 1989 May 30;28(11):4914–4922. doi: 10.1021/bi00437a058. [DOI] [PubMed] [Google Scholar]
  9. Kirino H., Aoki M., Aoshima M., Hayashi Y., Ohba M., Yamagishi A., Wakagi T., Oshima T. Hydrophobic interaction at the subunit interface contributes to the thermostability of 3-isopropylmalate dehydrogenase from an extreme thermophile, Thermus thermophilus. Eur J Biochem. 1994 Feb 15;220(1):275–281. doi: 10.1111/j.1432-1033.1994.tb18623.x. [DOI] [PubMed] [Google Scholar]
  10. Kotsuka T., Akanuma S., Tomuro M., Yamagishi A., Oshima T. Further stabilization of 3-isopropylmalate dehydrogenase of an extreme thermophile, Thermus thermophilus, by a suppressor mutation method. J Bacteriol. 1996 Feb;178(3):723–727. doi: 10.1128/jb.178.3.723-727.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Koyama Y., Hoshino T., Tomizuka N., Furukawa K. Genetic transformation of the extreme thermophile Thermus thermophilus and of other Thermus spp. J Bacteriol. 1986 Apr;166(1):338–340. doi: 10.1128/jb.166.1.338-340.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kunkel T. A., Roberts J. D., Zakour R. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 1987;154:367–382. doi: 10.1016/0076-6879(87)54085-x. [DOI] [PubMed] [Google Scholar]
  13. Kuroki R., Taniyama Y., Seko C., Nakamura H., Kikuchi M., Ikehara M. Design and creation of a Ca2+ binding site in human lysozyme to enhance structural stability. Proc Natl Acad Sci U S A. 1989 Sep;86(18):6903–6907. doi: 10.1073/pnas.86.18.6903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Liao H., McKenzie T., Hageman R. Isolation of a thermostable enzyme variant by cloning and selection in a thermophile. Proc Natl Acad Sci U S A. 1986 Feb;83(3):576–580. doi: 10.1073/pnas.83.3.576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Matsumura M., Becktel W. J., Levitt M., Matthews B. W. Stabilization of phage T4 lysozyme by engineered disulfide bonds. Proc Natl Acad Sci U S A. 1989 Sep;86(17):6562–6566. doi: 10.1073/pnas.86.17.6562. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Matsumura M., Becktel W. J., Matthews B. W. Hydrophobic stabilization in T4 lysozyme determined directly by multiple substitutions of Ile 3. Nature. 1988 Aug 4;334(6181):406–410. doi: 10.1038/334406a0. [DOI] [PubMed] [Google Scholar]
  17. Matthews B. W., Nicholson H., Becktel W. J. Enhanced protein thermostability from site-directed mutations that decrease the entropy of unfolding. Proc Natl Acad Sci U S A. 1987 Oct;84(19):6663–6667. doi: 10.1073/pnas.84.19.6663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Nagahari K., Sakaguchi K. Cloning of Bacillus subtilis leucina A, B and C genes with Escherichia coli plasmids and expression of the leuC gene in E. coli. Mol Gen Genet. 1978 Jan 17;158(3):263–270. doi: 10.1007/BF00267197. [DOI] [PubMed] [Google Scholar]
  19. Nicholson H., Becktel W. J., Matthews B. W. Enhanced protein thermostability from designed mutations that interact with alpha-helix dipoles. Nature. 1988 Dec 15;336(6200):651–656. doi: 10.1038/336651a0. [DOI] [PubMed] [Google Scholar]
  20. Numata K., Muro M., Akutsu N., Nosoh Y., Yamagishi A., Oshima T. Thermal stability of chimeric isopropylmalate dehydrogenase genes constructed from a thermophile and a mesophile. Protein Eng. 1995 Jan;8(1):39–43. doi: 10.1093/protein/8.1.39. [DOI] [PubMed] [Google Scholar]
  21. Onodera K., Sakurai M., Moriyama H., Tanaka N., Numata K., Oshima T., Sato M., Katsube Y. Three-dimensional structures of chimeric enzymes between Bacillus subtilis and Thermus thermophilus 3-isopropylmalate dehydrogenases. Protein Eng. 1994 Apr;7(4):453–459. doi: 10.1093/protein/7.4.453. [DOI] [PubMed] [Google Scholar]
  22. Pantoliano M. W., Whitlow M., Wood J. F., Dodd S. W., Hardman K. D., Rollence M. L., Bryan P. N. Large increases in general stability for subtilisin BPN' through incremental changes in the free energy of unfolding. Biochemistry. 1989 Sep 5;28(18):7205–7213. doi: 10.1021/bi00444a012. [DOI] [PubMed] [Google Scholar]
  23. Pantoliano M. W., Whitlow M., Wood J. F., Rollence M. L., Finzel B. C., Gilliland G. L., Poulos T. L., Bryan P. N. The engineering of binding affinity at metal ion binding sites for the stabilization of proteins: subtilisin as a test case. Biochemistry. 1988 Nov 1;27(22):8311–8317. doi: 10.1021/bi00422a004. [DOI] [PubMed] [Google Scholar]
  24. Sakaki Y., Oshima T. Isolation and characterization of a bacteriophage infectious to an extreme thermophile, Thermus thermophilus HB8. J Virol. 1975 Jun;15(6):1449–1453. doi: 10.1128/jvi.15.6.1449-1453.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sakurai M., Moriyama H., Onodera K., Kadono S., Numata K., Hayashi Y., Kawaguchi J., Yamagishi A., Oshima T., Tanaka N. The crystal structure of thermostable mutants of chimeric 3-isopropylmalate dehydrogenase, 2T2M6T. Protein Eng. 1995 Aug;8(8):763–767. doi: 10.1093/protein/8.8.763. [DOI] [PubMed] [Google Scholar]
  26. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Shoichet B. K., Baase W. A., Kuroki R., Matthews B. W. A relationship between protein stability and protein function. Proc Natl Acad Sci U S A. 1995 Jan 17;92(2):452–456. doi: 10.1073/pnas.92.2.452. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Stearman R. S., Frankel A. D., Freire E., Liu B. S., Pabo C. O. Combining thermostable mutations increases the stability of lambda repressor. Biochemistry. 1988 Sep 20;27(19):7571–7574. doi: 10.1021/bi00419a059. [DOI] [PubMed] [Google Scholar]
  29. Takada T., Akanuma S., Kotsuka T., Tamakoshi M., Yamagishi A., Oshima T. Recombination-Deficient Mutants of an Extreme Thermophile, Thermus thermophilus. Appl Environ Microbiol. 1993 Aug;59(8):2737–2739. doi: 10.1128/aem.59.8.2737-2739.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Tamakoshi M., Uchida M., Tanabe K., Fukuyama S., Yamagishi A., Oshima T. A new Thermus-Escherichia coli shuttle integration vector system. J Bacteriol. 1997 Aug;179(15):4811–4814. doi: 10.1128/jb.179.15.4811-4814.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Tamakoshi M., Yamagishi A., Oshima T. Screening of stable proteins in an extreme thermophile, Thermus thermophilus. Mol Microbiol. 1995 Jun;16(5):1031–1036. doi: 10.1111/j.1365-2958.1995.tb02328.x. [DOI] [PubMed] [Google Scholar]
  32. Tanaka T., Kawano N., Oshima T. Cloning of 3-isopropylmalate dehydrogenase gene of an extreme thermophile and partial purification of the gene product. J Biochem. 1981 Feb;89(2):677–682. doi: 10.1093/oxfordjournals.jbchem.a133245. [DOI] [PubMed] [Google Scholar]
  33. Yamada T., Akutsu N., Miyazaki K., Kakinuma K., Yoshida M., Oshima T. Purification, catalytic properties, and thermal stability of threo-Ds-3-isopropylmalate dehydrogenase coded by leuB gene from an extreme thermophile, Thermus thermophilus strain HB8. J Biochem. 1990 Sep;108(3):449–456. doi: 10.1093/oxfordjournals.jbchem.a123220. [DOI] [PubMed] [Google Scholar]
  34. Yutani K., Ogasahara K., Tsujita T., Sugino Y. Dependence of conformational stability on hydrophobicity of the amino acid residue in a series of variant proteins substituted at a unique position of tryptophan synthase alpha subunit. Proc Natl Acad Sci U S A. 1987 Jul;84(13):4441–4444. doi: 10.1073/pnas.84.13.4441. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES