Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1998 Apr;7(4):994–1005. doi: 10.1002/pro.5560070417

Mutagenesis of histidine 26 demonstrates the importance of loop-loop and loop-protein interactions for the function of iso-1-cytochrome c.

J S Fetrow 1, U Dreher 1, D J Wiland 1, D L Schaak 1, T L Boose 1
PMCID: PMC2143970  PMID: 9568906

Abstract

In yeast iso-1-cytochrome c, the side chain of histidine 26 (His26) attaches omega loop A to the main body of the protein by forming a hydrogen bond to the backbone atom carbonyl of glutamic acid 44. The His26 side chain also forms a stabilizing intra-loop interaction through a hydrogen bond to the backbone amide of asparagine 31. To investigate the importance of loop-protein attachment and intra-loop interactions to the structure and function of this protein, a series of site-directed and random-directed mutations were produced at His26. Yeast strains expressing these variant proteins were analyzed for their ability to grow on non-fermentable carbon sources and for their intracellular production of cytochrome c. While the data show that mutations at His26 lead to slightly decreased intracellular amounts of cytochrome c, the level of cytochrome c function is decreased more. The data suggest that cytochrome c reductase binding is affected more than cytochrome c oxidase or lactate dehydrogenase binding. We propose that mutations at this residue increase loop mobility, which, in turn, decreases the protein's ability to bind redox partners.

Full Text

The Full Text of this article is available as a PDF (3.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Auld D. S., Pielak G. J. Constraints on amino acid substitutions in the N-terminal helix of cytochrome c explored by random mutagenesis. Biochemistry. 1991 Sep 3;30(35):8684–8690. doi: 10.1021/bi00099a028. [DOI] [PubMed] [Google Scholar]
  2. Bai Y., Englander S. W. Future directions in folding: the multi-state nature of protein structure. Proteins. 1996 Feb;24(2):145–151. doi: 10.1002/(SICI)1097-0134(199602)24:2<145::AID-PROT1>3.0.CO;2-I. [DOI] [PubMed] [Google Scholar]
  3. Banci L., Bertini I., Bren K. L., Gray H. B., Sompornpisut P., Turano P. Solution structure of oxidized Saccharomyces cerevisiae iso-1-cytochrome c. Biochemistry. 1997 Jul 22;36(29):8992–9001. doi: 10.1021/bi963025c. [DOI] [PubMed] [Google Scholar]
  4. Berghuis A. M., Brayer G. D. Oxidation state-dependent conformational changes in cytochrome c. J Mol Biol. 1992 Feb 20;223(4):959–976. doi: 10.1016/0022-2836(92)90255-i. [DOI] [PubMed] [Google Scholar]
  5. Berghuis A. M., Guillemette J. G., Smith M., Brayer G. D. Mutation of tyrosine-67 to phenylalanine in cytochrome c significantly alters the local heme environment. J Mol Biol. 1994 Jan 28;235(4):1326–1341. doi: 10.1006/jmbi.1994.1086. [DOI] [PubMed] [Google Scholar]
  6. Bushnell G. W., Louie G. V., Brayer G. D. High-resolution three-dimensional structure of horse heart cytochrome c. J Mol Biol. 1990 Jul 20;214(2):585–595. doi: 10.1016/0022-2836(90)90200-6. [DOI] [PubMed] [Google Scholar]
  7. Chou K. C., Maggiora G. M., Scheraga H. A. Role of loop-helix interactions in stabilizing four-helix bundle proteins. Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7315–7319. doi: 10.1073/pnas.89.16.7315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cohen D. S., Pielak G. J. Stability of yeast iso-1-ferricytochrome c as a function of pH and temperature. Protein Sci. 1994 Aug;3(8):1253–1260. doi: 10.1002/pro.5560030811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cottrell S. F., Rabinowitz M., Getz G. S. Cytochrome synthesis in synchronous cultures of the yeast, Saccharomyces cerevisiae. J Biol Chem. 1975 Jun 10;250(11):4087–4094. [PubMed] [Google Scholar]
  10. Cutler R. L., Pielak G. J., Mauk A. G., Smith M. Replacement of cysteine-107 of Saccharomyces cerevisiae iso-1-cytochrome c with threonine: improved stability of the mutant protein. Protein Eng. 1987 Feb-Mar;1(2):95–99. doi: 10.1093/protein/1.2.95. [DOI] [PubMed] [Google Scholar]
  11. Das G., Hickey D. R., Principio L., Conklin K. T., Short J., Miller J. R., McLendon G., Sherman F. Replacements of lysine 32 in yeast cytochrome c. Effects on the binding and reactivity with physiological partners. J Biol Chem. 1988 Dec 5;263(34):18290–18297. [PubMed] [Google Scholar]
  12. DiBella E. E., Scheraga H. A. The role of the insertion loop around tryptophan 148 in tthe activity of thrombin. Biochemistry. 1996 Apr 9;35(14):4427–4433. doi: 10.1021/bi952617c. [DOI] [PubMed] [Google Scholar]
  13. Elöve G. A., Bhuyan A. K., Roder H. Kinetic mechanism of cytochrome c folding: involvement of the heme and its ligands. Biochemistry. 1994 Jun 7;33(22):6925–6935. doi: 10.1021/bi00188a023. [DOI] [PubMed] [Google Scholar]
  14. Falzone C. J., Wright P. E., Benkovic S. J. Dynamics of a flexible loop in dihydrofolate reductase from Escherichia coli and its implication for catalysis. Biochemistry. 1994 Jan 18;33(2):439–442. doi: 10.1021/bi00168a007. [DOI] [PubMed] [Google Scholar]
  15. Fetrow J. S., Cardillo T. S., Sherman F. Deletions and replacements of omega loops in yeast iso-1-cytochrome c. Proteins. 1989;6(4):372–381. doi: 10.1002/prot.340060404. [DOI] [PubMed] [Google Scholar]
  16. Fetrow J. S. Omega loops: nonregular secondary structures significant in protein function and stability. FASEB J. 1995 Jun;9(9):708–717. [PubMed] [Google Scholar]
  17. First E. A., Fersht A. R. Mutational and kinetic analysis of a mobile loop in tyrosyl-tRNA synthetase. Biochemistry. 1993 Dec 14;32(49):13658–13663. doi: 10.1021/bi00212a034. [DOI] [PubMed] [Google Scholar]
  18. Gekko K., Yamagami K., Kunori Y., Ichihara S., Kodama M., Iwakura M. Effects of point mutation in a flexible loop on the stability and enzymatic function of Escherichia coli dihydrofolate reductase. J Biochem. 1993 Jan;113(1):74–80. doi: 10.1093/oxfordjournals.jbchem.a124007. [DOI] [PubMed] [Google Scholar]
  19. Hampsey D. M., Das G., Sherman F. Amino acid replacements in yeast iso-1-cytochrome c. Comparison with the phylogenetic series and the tertiary structure of related cytochromes c. J Biol Chem. 1986 Mar 5;261(7):3259–3271. [PubMed] [Google Scholar]
  20. Hardy F., Vriend G., van der Vinne B., Frigerio F., Grandi G., Venema G., Eijsink V. G. The effect of engineering surface loops on the thermal stability of Bacillus subtilis neutral protease. Protein Eng. 1994 Mar;7(3):425–430. doi: 10.1093/protein/7.3.425. [DOI] [PubMed] [Google Scholar]
  21. Hedstrom L., Szilagyi L., Rutter W. J. Converting trypsin to chymotrypsin: the role of surface loops. Science. 1992 Mar 6;255(5049):1249–1253. doi: 10.1126/science.1546324. [DOI] [PubMed] [Google Scholar]
  22. Helms L. R., Wetzel R. Destabilizing loop swaps in the CDRs of an immunoglobulin VL domain. Protein Sci. 1995 Oct;4(10):2073–2081. doi: 10.1002/pro.5560041012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Hickey D. R., McLendon G., Sherman F. Thermodynamic stabilities of yeast iso-1-cytochromes c having amino acid substitutions for lysine 32. J Biol Chem. 1988 Dec 5;263(34):18298–18305. [PubMed] [Google Scholar]
  24. Kunkel T. A., Roberts J. D., Zakour R. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 1987;154:367–382. doi: 10.1016/0076-6879(87)54085-x. [DOI] [PubMed] [Google Scholar]
  25. Langen R., Brayer G. D., Berghuis A. M., McLendon G., Sherman F., Warshel A. Effect of the Asn52----Ile mutation on the redox potential of yeast cytochrome c. Theory and experiment. J Mol Biol. 1992 Apr 5;224(3):589–600. doi: 10.1016/0022-2836(92)90546-v. [DOI] [PubMed] [Google Scholar]
  26. Li L., Falzone C. J., Wright P. E., Benkovic S. J. Functional role of a mobile loop of Escherichia coli dihydrofolate reductase in transition-state stabilization. Biochemistry. 1992 Sep 1;31(34):7826–7833. doi: 10.1021/bi00149a012. [DOI] [PubMed] [Google Scholar]
  27. Liang H., Petros A. M., Meadows R. P., Yoon H. S., Egan D. A., Walter K., Holzman T. F., Robins T., Fesik S. W. Solution structure of the DNA-binding domain of a human papillomavirus E2 protein: evidence for flexible DNA-binding regions. Biochemistry. 1996 Feb 20;35(7):2095–2103. doi: 10.1021/bi951932w. [DOI] [PubMed] [Google Scholar]
  28. Linske-O'Connell L. I., Sherman F., McLendon G. Site specific combinations of stabilizing and destabilizing amino acid replacements in yeast cytochrome c: in vivo and in vitro effects. Biochemistry. 1995 May 30;34(21):7103–7112. doi: 10.1021/bi00021a023. [DOI] [PubMed] [Google Scholar]
  29. Louie G. V., Brayer G. D. High-resolution refinement of yeast iso-1-cytochrome c and comparisons with other eukaryotic cytochromes c. J Mol Biol. 1990 Jul 20;214(2):527–555. doi: 10.1016/0022-2836(90)90197-T. [DOI] [PubMed] [Google Scholar]
  30. Louie G. V., Pielak G. J., Smith M., Brayer G. D. Role of phenylalanine-82 in yeast iso-1-cytochrome c and remote conformational changes induced by a serine residue at this position. Biochemistry. 1988 Oct 4;27(20):7870–7876. doi: 10.1021/bi00420a043. [DOI] [PubMed] [Google Scholar]
  31. Marmorino J. L., Auld D. S., Betz S. F., Doyle D. F., Young G. B., Pielak G. J. Amide proton exchange rates of oxidized and reduced Saccharomyces cerevisiae iso-1-cytochrome c. Protein Sci. 1993 Nov;2(11):1966–1974. doi: 10.1002/pro.5560021118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Mulligan-Pullyblank P., Spitzer J. S., Gilden B. M., Fetrow J. S. Loop replacement and random mutagenesis of omega-loop D, residues 70-84, in iso-1-cytochrome c. J Biol Chem. 1996 Apr 12;271(15):8633–8645. doi: 10.1074/jbc.271.15.8633. [DOI] [PubMed] [Google Scholar]
  33. Murphy M. E., Fetrow J. S., Burton R. E., Brayer G. D. The structure and function of omega loop A replacements in cytochrome c. Protein Sci. 1993 Sep;2(9):1429–1440. doi: 10.1002/pro.5560020907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Murphy M. E., Nall B. T., Brayer G. D. Structure determination and analysis of yeast iso-2-cytochrome c and a composite mutant protein. J Mol Biol. 1992 Sep 5;227(1):160–176. doi: 10.1016/0022-2836(92)90689-h. [DOI] [PubMed] [Google Scholar]
  35. Ochi H., Hata Y., Tanaka N., Kakudo M., Sakurai T., Aihara S., Morita Y. Structure of rice ferricytochrome c at 2.0 A resolution. J Mol Biol. 1983 May 25;166(3):407–418. doi: 10.1016/s0022-2836(83)80092-8. [DOI] [PubMed] [Google Scholar]
  36. Pan Q. W., Tanase S., Fukumoto Y., Nagashima F., Rhee S., Rogers P. H., Arnone A., Morino Y. Functional roles of valine 37 and glycine 38 in the mobile loop of porcine cytosolic aspartate aminotransferase. J Biol Chem. 1993 Nov 25;268(33):24758–24765. [PubMed] [Google Scholar]
  37. Pielak G. J., Auld D. S., Beasley J. R., Betz S. F., Cohen D. S., Doyle D. F., Finger S. A., Fredericks Z. L., Hilgen-Willis S., Saunders A. J. Protein thermal denaturation, side-chain models, and evolution: amino acid substitutions at a conserved helix-helix interface. Biochemistry. 1995 Mar 14;34(10):3268–3276. doi: 10.1021/bi00010a017. [DOI] [PubMed] [Google Scholar]
  38. Pielak G. J., Mauk A. G., Smith M. Site-directed mutagenesis of cytochrome c shows that an invariant Phe is not essential for function. Nature. 1985 Jan 10;313(5998):152–154. doi: 10.1038/313152a0. [DOI] [PubMed] [Google Scholar]
  39. Pierce M. M., Nall B. T. Fast folding of cytochrome c. Protein Sci. 1997 Mar;6(3):618–627. doi: 10.1002/pro.5560060311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Pompliano D. L., Peyman A., Knowles J. R. Stabilization of a reaction intermediate as a catalytic device: definition of the functional role of the flexible loop in triosephosphate isomerase. Biochemistry. 1990 Apr 3;29(13):3186–3194. doi: 10.1021/bi00465a005. [DOI] [PubMed] [Google Scholar]
  41. Poole L. B., Loveys D. A., Hale S. P., Gerlt J. A., Stanczyk S. M., Bolton P. H. Deletion of the omega-loop in the active site of staphylococcal nuclease. 1. Effect on catalysis and stability. Biochemistry. 1991 Apr 16;30(15):3621–3627. doi: 10.1021/bi00229a005. [DOI] [PubMed] [Google Scholar]
  42. Qi P. X., Di Stefano D. L., Wand A. J. Solution structure of horse heart ferrocytochrome c determined by high-resolution NMR and restrained simulated annealing. Biochemistry. 1994 May 31;33(21):6408–6417. doi: 10.1021/bi00187a004. [DOI] [PubMed] [Google Scholar]
  43. Qin W., Sanishvili R., Plotkin B., Schejter A., Margoliash E. The role of histidines 26 and 33 in the structural stabilization of cytochrome c. Biochim Biophys Acta. 1995 Sep 27;1252(1):87–94. doi: 10.1016/0167-4838(95)00124-d. [DOI] [PubMed] [Google Scholar]
  44. Raines R. T., Toscano M. P., Nierengarten D. M., Ha J. H., Auerbach R. Replacing a surface loop endows ribonuclease A with angiogenic activity. J Biol Chem. 1995 Jul 21;270(29):17180–17184. doi: 10.1074/jbc.270.29.17180. [DOI] [PubMed] [Google Scholar]
  45. Schweingruber M. E., Sherman F., Stewart J. W. Altered absorption spectra of iso-1-cytochromes c from mutants of yeast. J Biol Chem. 1977 Oct 10;252(19):6577–6580. [PubMed] [Google Scholar]
  46. Schweingruber M. E., Stewart J. W., Sherman F. Primary site and second site revertants of missense mutants of the evolutionarily invariant tryptophan 64 in iso-1-cytochrome c from yeast. J Biol Chem. 1979 May 25;254(10):4132–4143. [PubMed] [Google Scholar]
  47. Sherman F., Stewart J. W., Parker J. H., Inhaber E., Shipman N. A., Putterman G. J., Gardisky R. L., Margoliash E. The mutational alteration of the primary structure of yeast iso-1-cytochrome c. J Biol Chem. 1968 Oct 25;243(20):5446–5456. [PubMed] [Google Scholar]
  48. Shortle D., Sondek J. The emerging role of insertions and deletions in protein engineering. Curr Opin Biotechnol. 1995 Aug;6(4):387–393. doi: 10.1016/0958-1669(95)80067-0. [DOI] [PubMed] [Google Scholar]
  49. Takano T., Dickerson R. E. Conformation change of cytochrome c. II. Ferricytochrome c refinement at 1.8 A and comparison with the ferrocytochrome structure. J Mol Biol. 1981 Nov 25;153(1):95–115. doi: 10.1016/0022-2836(81)90529-5. [DOI] [PubMed] [Google Scholar]
  50. Tanaka N., Yamane T., Tsukihara T., Ashida T., Kakudo M. The crystal structure of bonito (katsuo) ferrocytochrome c at 2.3 A resolution. II. Structure and function. J Biochem. 1975 Jan 1;77(1?):147–162. [PubMed] [Google Scholar]
  51. Tramontano A., Lesk A. M. Common features of the conformations of antigen-binding loops in immunoglobulins and application to modeling loop conformations. Proteins. 1992 Jul;13(3):231–245. doi: 10.1002/prot.340130306. [DOI] [PubMed] [Google Scholar]
  52. el Hawrani A. S., Moreton K. M., Sessions R. B., Clarke A. R., Holbrook J. J. Engineering surface loops of proteins--a preferred strategy for obtaining new enzyme function. Trends Biotechnol. 1994 May;12(5):207–211. doi: 10.1016/0167-7799(94)90084-1. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES