Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1998 Apr;7(4):951–960. doi: 10.1002/pro.5560070412

Mapping of the interleukin-10/interleukin-10 receptor combining site.

U Reineke 1, R Sabat 1, H D Volk 1, J Schneider-Mergener 1
PMCID: PMC2143979  PMID: 9568901

Abstract

The discontinuous interleukin-10(IL-10)/interleukin-10 receptor (IL-10R) combining site was mapped using sets of overlapping peptides derived from both binding partners bound to continuous cellulose membranes. Low affinity binding of single regions of the discontinuous contact sites on IL-10 and IL-10R could be identified due to (1) high peptide density on the membrane support, (2) incubation with high protein concentrations, (3) indirect immunodetection of the ligates after electrotransfer onto polyvinylene difluoride membranes, and (4) use of highly overlapping peptide scans of different length (6-mers and 15-mers). The single binding regions identified for each protein species are separated in the protein sequences, but form continuous areas on the surface of IL-10 (X-ray structure) and IL-10R (computer model). Furthermore, four epitopes of neutralizing anti-IL-10 and anti-IL-10R antibodies were mapped and overlap with these binding regions. Soluble peptides (15- to 19-mers) each spanning one of the three identified IL-10-derived receptor binding regions displayed no significant affinity to IL-10R as expected, whereas a peptide (35-mer) comprising two of these regions had considerably higher binding activity. The data are consistent with a previously published computer model of the IL-10/IL-10R complex. This approach should be generally applicable for the mapping of non-linear protein-protein contact sites.

Full Text

The Full Text of this article is available as a PDF (4.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aguet M., Dembić Z., Merlin G. Molecular cloning and expression of the human interferon-gamma receptor. Cell. 1988 Oct 21;55(2):273–280. doi: 10.1016/0092-8674(88)90050-5. [DOI] [PubMed] [Google Scholar]
  2. Bazan J. F. Structural design and molecular evolution of a cytokine receptor superfamily. Proc Natl Acad Sci U S A. 1990 Sep;87(18):6934–6938. doi: 10.1073/pnas.87.18.6934. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beck-Sickinger A. G., Jung G. Epitope mapping: synthetic approaches to the understanding of molecular recognition in the immune system. Pharm Acta Helv. 1993;68(1):3–20. doi: 10.1016/0031-6865(93)90003-o. [DOI] [PubMed] [Google Scholar]
  4. Bidart J. M., Troalen F., Ghillani P., Rouas N., Razafindratsita A., Bohuon C., Bellet D. Peptide immunogen mimicry of a protein-specific structural epitope on human choriogonadotropin. Science. 1990 May 11;248(4956):736–739. doi: 10.1126/science.1692160. [DOI] [PubMed] [Google Scholar]
  5. Bogdan C., Vodovotz Y., Nathan C. Macrophage deactivation by interleukin 10. J Exp Med. 1991 Dec 1;174(6):1549–1555. doi: 10.1084/jem.174.6.1549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chen Y. C., Delbrook K., Dealwis C., Mimms L., Mushahwar I. K., Mandecki W. Discontinuous epitopes of hepatitis B surface antigen derived from a filamentous phage peptide library. Proc Natl Acad Sci U S A. 1996 Mar 5;93(5):1997–2001. doi: 10.1073/pnas.93.5.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Davies D. R., Cohen G. H. Interactions of protein antigens with antibodies. Proc Natl Acad Sci U S A. 1996 Jan 9;93(1):7–12. doi: 10.1073/pnas.93.1.7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ealick S. E., Cook W. J., Vijay-Kumar S., Carson M., Nagabhushan T. L., Trotta P. P., Bugg C. E. Three-dimensional structure of recombinant human interferon-gamma. Science. 1991 May 3;252(5006):698–702. doi: 10.1126/science.1902591. [DOI] [PubMed] [Google Scholar]
  9. Finbloom D. S., Winestock K. D. IL-10 induces the tyrosine phosphorylation of tyk2 and Jak1 and the differential assembly of STAT1 alpha and STAT3 complexes in human T cells and monocytes. J Immunol. 1995 Aug 1;155(3):1079–1090. [PubMed] [Google Scholar]
  10. Fiorentino D. F., Bond M. W., Mosmann T. R. Two types of mouse T helper cell. IV. Th2 clones secrete a factor that inhibits cytokine production by Th1 clones. J Exp Med. 1989 Dec 1;170(6):2081–2095. doi: 10.1084/jem.170.6.2081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fleming S. B., McCaughan C. A., Andrews A. E., Nash A. D., Mercer A. A. A homolog of interleukin-10 is encoded by the poxvirus orf virus. J Virol. 1997 Jun;71(6):4857–4861. doi: 10.1128/jvi.71.6.4857-4861.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Friguet B., Chaffotte A. F., Djavadi-Ohaniance L., Goldberg M. E. Measurements of the true affinity constant in solution of antigen-antibody complexes by enzyme-linked immunosorbent assay. J Immunol Methods. 1985 Mar 18;77(2):305–319. doi: 10.1016/0022-1759(85)90044-4. [DOI] [PubMed] [Google Scholar]
  13. Gao B., Esnouf M. P. Multiple interactive residues of recognition: elucidation of discontinuous epitopes with linear peptides. J Immunol. 1996 Jul 1;157(1):183–188. [PubMed] [Google Scholar]
  14. Geysen H. M., Meloen R. H., Barteling S. J. Use of peptide synthesis to probe viral antigens for epitopes to a resolution of a single amino acid. Proc Natl Acad Sci U S A. 1984 Jul;81(13):3998–4002. doi: 10.1073/pnas.81.13.3998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Geysen H. M., Rodda S. J., Mason T. J. A priori delineation of a peptide which mimics a discontinuous antigenic determinant. Mol Immunol. 1986 Jul;23(7):709–715. doi: 10.1016/0161-5890(86)90081-7. [DOI] [PubMed] [Google Scholar]
  16. Geysen H. M., Rodda S. J., Mason T. J., Tribbick G., Schoofs P. G. Strategies for epitope analysis using peptide synthesis. J Immunol Methods. 1987 Sep 24;102(2):259–274. doi: 10.1016/0022-1759(87)90085-8. [DOI] [PubMed] [Google Scholar]
  17. Ho A. S., Liu Y., Khan T. A., Hsu D. H., Bazan J. F., Moore K. W. A receptor for interleukin 10 is related to interferon receptors. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):11267–11271. doi: 10.1073/pnas.90.23.11267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hoess R. H., Mack A. J., Walton H., Reilly T. M. Identification of a structural epitope by using a peptide library displayed on filamentous bacteriophage. J Immunol. 1994 Jul 15;153(2):724–729. [PubMed] [Google Scholar]
  19. Houghten R. A. General method for the rapid solid-phase synthesis of large numbers of peptides: specificity of antigen-antibody interaction at the level of individual amino acids. Proc Natl Acad Sci U S A. 1985 Aug;82(15):5131–5135. doi: 10.1073/pnas.82.15.5131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Jones S., Thornton J. M. Principles of protein-protein interactions. Proc Natl Acad Sci U S A. 1996 Jan 9;93(1):13–20. doi: 10.1073/pnas.93.1.13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kotenko S. V., Krause C. D., Izotova L. S., Pollack B. P., Wu W., Pestka S. Identification and functional characterization of a second chain of the interleukin-10 receptor complex. EMBO J. 1997 Oct 1;16(19):5894–5903. doi: 10.1093/emboj/16.19.5894. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kramer A., Keitel T., Winkler K., Stöcklein W., Höhne W., Schneider-Mergener J. Molecular basis for the binding promiscuity of an anti-p24 (HIV-1) monoclonal antibody. Cell. 1997 Dec 12;91(6):799–809. doi: 10.1016/s0092-8674(00)80468-7. [DOI] [PubMed] [Google Scholar]
  23. Kramer A., Schneider-Mergener J. Synthesis and screening of peptide libraries on continuous cellulose membrane supports. Methods Mol Biol. 1998;87:25–39. doi: 10.1385/0-89603-392-9:25. [DOI] [PubMed] [Google Scholar]
  24. Liu Y., Wei S. H., Ho A. S., de Waal Malefyt R., Moore K. W. Expression cloning and characterization of a human IL-10 receptor. J Immunol. 1994 Feb 15;152(4):1821–1829. [PubMed] [Google Scholar]
  25. Liu Y., de Waal Malefyt R., Briere F., Parham C., Bridon J. M., Banchereau J., Moore K. W., Xu J. The EBV IL-10 homologue is a selective agonist with impaired binding to the IL-10 receptor. J Immunol. 1997 Jan 15;158(2):604–613. [PubMed] [Google Scholar]
  26. Miyazaki I., Cheung R. K., Dosch H. M. Viral interleukin 10 is critical for the induction of B cell growth transformation by Epstein-Barr virus. J Exp Med. 1993 Aug 1;178(2):439–447. doi: 10.1084/jem.178.2.439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Moore K. W., O'Garra A., de Waal Malefyt R., Vieira P., Mosmann T. R. Interleukin-10. Annu Rev Immunol. 1993;11:165–190. doi: 10.1146/annurev.iy.11.040193.001121. [DOI] [PubMed] [Google Scholar]
  28. Moore K. W., Vieira P., Fiorentino D. F., Trounstine M. L., Khan T. A., Mosmann T. R. Homology of cytokine synthesis inhibitory factor (IL-10) to the Epstein-Barr virus gene BCRFI. Science. 1990 Jun 8;248(4960):1230–1234. doi: 10.1126/science.2161559. [DOI] [PubMed] [Google Scholar]
  29. Paterson Y., Englander S. W., Roder H. An antibody binding site on cytochrome c defined by hydrogen exchange and two-dimensional NMR. Science. 1990 Aug 17;249(4970):755–759. doi: 10.1126/science.1697101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Phizicky E. M., Fields S. Protein-protein interactions: methods for detection and analysis. Microbiol Rev. 1995 Mar;59(1):94–123. doi: 10.1128/mr.59.1.94-123.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Presnell S. R., Cohen F. E. Topological distribution of four-alpha-helix bundles. Proc Natl Acad Sci U S A. 1989 Sep;86(17):6592–6596. doi: 10.1073/pnas.86.17.6592. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Reineke U., Sabat R., Kramer A., Stigler R. D., Seifert M., Michel T., Volk H. D., Schneider-Mergener J. Mapping protein-protein contact sites using cellulose-bound peptide scans. Mol Divers. 1996 May;1(3):141–148. doi: 10.1007/BF01544952. [DOI] [PubMed] [Google Scholar]
  33. Rousset F., Garcia E., Defrance T., Péronne C., Vezzio N., Hsu D. H., Kastelein R., Moore K. W., Banchereau J. Interleukin 10 is a potent growth and differentiation factor for activated human B lymphocytes. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1890–1893. doi: 10.1073/pnas.89.5.1890. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Rüdiger S., Germeroth L., Schneider-Mergener J., Bukau B. Substrate specificity of the DnaK chaperone determined by screening cellulose-bound peptide libraries. EMBO J. 1997 Apr 1;16(7):1501–1507. doi: 10.1093/emboj/16.7.1501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Sabat R., Seifert M., Volk H. D., Glaser R. W. Neutralizing murine monoclonal anti-interleukin-10 antibodies enhance binding of antibodies against a different epitope. Mol Immunol. 1996 Oct;33(14):1103–1111. doi: 10.1016/s0161-5890(96)00072-7. [DOI] [PubMed] [Google Scholar]
  36. Samudzi C. T., Burton L. E., Rubin J. R. Crystal structure of recombinant rabbit interferon-gamma at 2.7-A resolution. J Biol Chem. 1991 Nov 15;266(32):21791–21797. [PubMed] [Google Scholar]
  37. Suda T., O'Garra A., MacNeil I., Fischer M., Bond M. W., Zlotnik A. Identification of a novel thymocyte growth-promoting factor derived from B cell lymphomas. Cell Immunol. 1990 Aug;129(1):228–240. doi: 10.1016/0008-8749(90)90200-b. [DOI] [PubMed] [Google Scholar]
  38. Tan J. C., Braun S., Rong H., DiGiacomo R., Dolphin E., Baldwin S., Narula S. K., Zavodny P. J., Chou C. C. Characterization of recombinant extracellular domain of human interleukin-10 receptor. J Biol Chem. 1995 May 26;270(21):12906–12911. doi: 10.1074/jbc.270.21.12906. [DOI] [PubMed] [Google Scholar]
  39. Tan J. C., Indelicato S. R., Narula S. K., Zavodny P. J., Chou C. C. Characterization of interleukin-10 receptors on human and mouse cells. J Biol Chem. 1993 Oct 5;268(28):21053–21059. [PubMed] [Google Scholar]
  40. Thompson-Snipes L., Dhar V., Bond M. W., Mosmann T. R., Moore K. W., Rennick D. M. Interleukin 10: a novel stimulatory factor for mast cells and their progenitors. J Exp Med. 1991 Feb 1;173(2):507–510. doi: 10.1084/jem.173.2.507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Vieira P., de Waal-Malefyt R., Dang M. N., Johnson K. E., Kastelein R., Fiorentino D. F., deVries J. E., Roncarolo M. G., Mosmann T. R., Moore K. W. Isolation and expression of human cytokine synthesis inhibitory factor cDNA clones: homology to Epstein-Barr virus open reading frame BCRFI. Proc Natl Acad Sci U S A. 1991 Feb 15;88(4):1172–1176. doi: 10.1073/pnas.88.4.1172. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Walter M. R., Nagabhushan T. L. Crystal structure of interleukin 10 reveals an interferon gamma-like fold. Biochemistry. 1995 Sep 26;34(38):12118–12125. doi: 10.1021/bi00038a004. [DOI] [PubMed] [Google Scholar]
  43. Walter M. R., Windsor W. T., Nagabhushan T. L., Lundell D. J., Lunn C. A., Zauodny P. J., Narula S. K. Crystal structure of a complex between interferon-gamma and its soluble high-affinity receptor. Nature. 1995 Jul 20;376(6537):230–235. doi: 10.1038/376230a0. [DOI] [PubMed] [Google Scholar]
  44. Weiergräber O., Schneider-Mergener J., Grötzinger J., Wollmer A., Küster A., Exner M., Heinrich P. C. Use of immobilized synthetic peptides for the identification of contact sites between human interleukin-6 and its receptor. FEBS Lett. 1996 Jan 29;379(2):122–126. doi: 10.1016/0014-5793(95)01482-9. [DOI] [PubMed] [Google Scholar]
  45. Wells J. A. Binding in the growth hormone receptor complex. Proc Natl Acad Sci U S A. 1996 Jan 9;93(1):1–6. doi: 10.1073/pnas.93.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Wrighton N. C., Farrell F. X., Chang R., Kashyap A. K., Barbone F. P., Mulcahy L. S., Johnson D. L., Barrett R. W., Jolliffe L. K., Dower W. J. Small peptides as potent mimetics of the protein hormone erythropoietin. Science. 1996 Jul 26;273(5274):458–464. doi: 10.1126/science.273.5274.458. [DOI] [PubMed] [Google Scholar]
  47. Yone K., Bajard S., Tsunekawa N., Suzuki J. Epitopic regions for antibodies against tumor necrosis factor alpha. Analysis by synthetic peptide mapping. J Biol Chem. 1995 Aug 18;270(33):19509–19515. doi: 10.1074/jbc.270.33.19509. [DOI] [PubMed] [Google Scholar]
  48. Zdanov A., Schalk-Hihi C., Gustchina A., Tsang M., Weatherbee J., Wlodawer A. Crystal structure of interleukin-10 reveals the functional dimer with an unexpected topological similarity to interferon gamma. Structure. 1995 Jun 15;3(6):591–601. doi: 10.1016/s0969-2126(01)00193-9. [DOI] [PubMed] [Google Scholar]
  49. Zdanov A., Schalk-Hihi C., Menon S., Moore K. W., Wlodawer A. Crystal structure of Epstein-Barr virus protein BCRF1, a homolog of cellular interleukin-10. J Mol Biol. 1997 May 2;268(2):460–467. doi: 10.1006/jmbi.1997.0990. [DOI] [PubMed] [Google Scholar]
  50. Zdanov A., Schalk-Hihi C., Wlodawer A. Crystal structure of human interleukin-10 at 1.6 A resolution and a model of a complex with its soluble receptor. Protein Sci. 1996 Oct;5(10):1955–1962. doi: 10.1002/pro.5560051001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. de Waal Malefyt R., Haanen J., Spits H., Roncarolo M. G., te Velde A., Figdor C., Johnson K., Kastelein R., Yssel H., de Vries J. E. Interleukin 10 (IL-10) and viral IL-10 strongly reduce antigen-specific human T cell proliferation by diminishing the antigen-presenting capacity of monocytes via downregulation of class II major histocompatibility complex expression. J Exp Med. 1991 Oct 1;174(4):915–924. doi: 10.1084/jem.174.4.915. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES