Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1998 Apr;7(4):961–965. doi: 10.1002/pro.5560070413

A differential scanning calorimetric study of the thermal unfolding of apo- and holo-cytochrome b562.

C R Robinson 1, Y Liu 1, R O'Brien 1, S G Sligar 1, J M Sturtevant 1
PMCID: PMC2143982  PMID: 9568902

Abstract

Cytochrome b562 is a four-helix-bundle protein containing a non-covalently bound b-type heme prosthetic group. In the absence of heme, cytochrome b562 remains highly structured under native conditions. Here we report thermodynamic data for the thermal denaturation of the holo- and apoproteins as determined by differential scanning calorimetry. Thermal denaturation of holocytochrome b562 is a highly reversible process, and unexpectedly does not involve dissociation of the heme prosthetic group. Thermal denaturation of the corresponding apoprotein, with the heme group chemically removed, remains a cooperative, reversible process. Apocytochrome b562 is substantially destabilized relative to the holoprotein: the t1/2 is more than ten degrees lower, and enthalpy and heat capacity changes are about one-half of the holoprotein values. However, the energetic parameters of apocytochrome b562 denaturation are within the range of observed values for small proteins.

Full Text

The Full Text of this article is available as a PDF (1.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baldwin R. L. Protein folding. Matching speed and stability. Nature. 1994 May 19;369(6477):183–184. doi: 10.1038/369183a0. [DOI] [PubMed] [Google Scholar]
  2. Bowie J. U., Sauer R. T. Equilibrium dissociation and unfolding of the Arc repressor dimer. Biochemistry. 1989 Sep 5;28(18):7139–7143. doi: 10.1021/bi00444a001. [DOI] [PubMed] [Google Scholar]
  3. Cocco M. J., Lecomte J. T. Characterization of hydrophobic cores in apomyoglobin: a proton NMR spectroscopy study. Biochemistry. 1990 Dec 18;29(50):11067–11072. doi: 10.1021/bi00502a008. [DOI] [PubMed] [Google Scholar]
  4. Connelly P., Ghosaini L., Hu C. Q., Kitamura S., Tanaka A., Sturtevant J. M. A differential scanning calorimetric study of the thermal unfolding of seven mutant forms of phage T4 lysozyme. Biochemistry. 1991 Feb 19;30(7):1887–1891. doi: 10.1021/bi00221a022. [DOI] [PubMed] [Google Scholar]
  5. Genzor C. G., Beldarraín A., Gómez-Moreno C., López-Lacomba J. L., Cortijo M., Sancho J. Conformational stability of apoflavodoxin. Protein Sci. 1996 Jul;5(7):1376–1388. doi: 10.1002/pro.5560050716. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hagihara Y., Tan Y., Goto Y. Comparison of the conformational stability of the molten globule and native states of horse cytochrome c. Effects of acetylation, heat, urea and guanidine-hydrochloride. J Mol Biol. 1994 Apr 1;237(3):336–348. doi: 10.1006/jmbi.1994.1234. [DOI] [PubMed] [Google Scholar]
  7. Hahn K. W., Klis W. A., Stewart J. M. Design and synthesis of a peptide having chymotrypsin-like esterase activity. Science. 1990 Jun 22;248(4962):1544–1547. doi: 10.1126/science.2360048. [DOI] [PubMed] [Google Scholar]
  8. Hamada D., Kidokoro S., Fukada H., Takahashi K., Goto Y. Salt-induced formation of the molten globule state of cytochrome c studied by isothermal titration calorimetry. Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10325–10329. doi: 10.1073/pnas.91.22.10325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hecht M. H., Richardson J. S., Richardson D. C., Ogden R. C. De novo design, expression, and characterization of Felix: a four-helix bundle protein of native-like sequence. Science. 1990 Aug 24;249(4971):884–891. doi: 10.1126/science.2392678. [DOI] [PubMed] [Google Scholar]
  10. Itagaki E., Hager L. P. Studies on cytochrome b-562 of Escherichia coli. I. Purification and crystallization of cytochrome b-562. J Biol Chem. 1966 Aug 25;241(16):3687–3695. [PubMed] [Google Scholar]
  11. Itagaki E., Palmer G., Hager L. P. Studies on cytochrome b562 of Escherichia coli. II. Reconstitution of cytochrome b562 from apoprotein and hemin. J Biol Chem. 1967 May 10;242(9):2272–2277. [PubMed] [Google Scholar]
  12. Kalsbeck W. A., Robertson D. E., Pandey R. K., Smith K. M., Dutton P. L., Bocian D. F. Structural and electronic properties of the heme cofactors in a multi-heme synthetic cytochrome. Biochemistry. 1996 Mar 19;35(11):3429–3438. doi: 10.1021/bi952662k. [DOI] [PubMed] [Google Scholar]
  13. Kim P. S., Baldwin R. L. Intermediates in the folding reactions of small proteins. Annu Rev Biochem. 1990;59:631–660. doi: 10.1146/annurev.bi.59.070190.003215. [DOI] [PubMed] [Google Scholar]
  14. Kitamura S., Sturtevant J. M. A scanning calorimetric study of the thermal denaturation of the lysozyme of phage T4 and the Arg 96----His mutant form thereof. Biochemistry. 1989 May 2;28(9):3788–3792. doi: 10.1021/bi00435a024. [DOI] [PubMed] [Google Scholar]
  15. Kreimer D. I., Shin I., Shnyrov V. L., Villar E., Silman I., Weiner L. Two partially unfolded states of Torpedo californica acetylcholinesterase. Protein Sci. 1996 Sep;5(9):1852–1864. doi: 10.1002/pro.5560050911. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lederer F., Glatigny A., Bethge P. H., Bellamy H. D., Matthew F. S. Improvement of the 2.5 A resolution model of cytochrome b562 by redetermining the primary structure and using molecular graphics. J Mol Biol. 1981 Jun 5;148(4):427–448. doi: 10.1016/0022-2836(81)90185-6. [DOI] [PubMed] [Google Scholar]
  17. Martínez J. C., Filimonov V. V., Mateo P. L., Schreiber G., Fersht A. R. A calorimetric study of the thermal stability of barstar and its interaction with barnase. Biochemistry. 1995 Apr 18;34(15):5224–5233. doi: 10.1021/bi00015a036. [DOI] [PubMed] [Google Scholar]
  18. Mathews F. S., Bethge P. H., Czerwinski E. W. The structure of cytochrome b562 from Escherichia coli at 2.5 A resolution. J Biol Chem. 1979 Mar 10;254(5):1699–1706. [PubMed] [Google Scholar]
  19. Moore C. D., al-Misky O. N., Lecomte J. T. Similarities in structure between holocytochrome b5 and apocytochrome b5: NMR studies of the histidine residues. Biochemistry. 1991 Aug 27;30(34):8357–8365. doi: 10.1021/bi00098a012. [DOI] [PubMed] [Google Scholar]
  20. Nishii I., Kataoka M., Goto Y. Thermodynamic stability of the molten globule states of apomyoglobin. J Mol Biol. 1995 Jul 7;250(2):223–238. doi: 10.1006/jmbi.1995.0373. [DOI] [PubMed] [Google Scholar]
  21. Ogasahara K., Matsushita E., Yutani K. Further examination of the intermediate state in the denaturation of the tryptophan synthase alpha subunit. Evidence that the equilibrium denaturation intermediate is a molten globule. J Mol Biol. 1993 Dec 20;234(4):1197–1206. doi: 10.1006/jmbi.1993.1670. [DOI] [PubMed] [Google Scholar]
  22. Ptitsyn O. B. Molten globule and protein folding. Adv Protein Chem. 1995;47:83–229. doi: 10.1016/s0065-3233(08)60546-x. [DOI] [PubMed] [Google Scholar]
  23. Robertson D. E., Farid R. S., Moser C. C., Urbauer J. L., Mulholland S. E., Pidikiti R., Lear J. D., Wand A. J., DeGrado W. F., Dutton P. L. Design and synthesis of multi-haem proteins. Nature. 1994 Mar 31;368(6470):425–432. doi: 10.1038/368425a0. [DOI] [PubMed] [Google Scholar]
  24. Robinson C. R., Liu Y., Thomson J. A., Sturtevant J. M., Sligar S. G. Energetics of heme binding to native and denatured states of cytochrome b562. Biochemistry. 1997 Dec 23;36(51):16141–16146. doi: 10.1021/bi971470h. [DOI] [PubMed] [Google Scholar]
  25. Robinson C. R., Sligar S. G. Electrostatic stabilization in four-helix bundle proteins. Protein Sci. 1993 May;2(5):826–837. doi: 10.1002/pro.5560020512. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sanz J. M., Johnson C. M., Fersht A. R. The A-state of barnase. Biochemistry. 1994 Sep 20;33(37):11189–11199. doi: 10.1021/bi00203a015. [DOI] [PubMed] [Google Scholar]
  27. Sauer R. T., Milla M. E., Waldburger C. D., Brown B. M., Schildbach J. F. Sequence determinants of folding and stability for the P22 Arc repressor dimer. FASEB J. 1996 Jan;10(1):42–48. doi: 10.1096/fasebj.10.1.8566546. [DOI] [PubMed] [Google Scholar]
  28. Van Dael H., Haezebrouck P., Morozova L., Arico-Muendel C., Dobson C. M. Partially folded states of equine lysozyme. Structural characterization and significance for protein folding. Biochemistry. 1993 Nov 9;32(44):11886–11894. doi: 10.1021/bi00095a018. [DOI] [PubMed] [Google Scholar]
  29. Xie D., Bhakuni V., Freire E. Calorimetric determination of the energetics of the molten globule intermediate in protein folding: apo-alpha-lactalbumin. Biochemistry. 1991 Nov 5;30(44):10673–10678. doi: 10.1021/bi00108a010. [DOI] [PubMed] [Google Scholar]
  30. Yutani K., Ogasahara K., Kuwajima K. Absence of the thermal transition in apo-alpha-lactalbumin in the molten globule state. A study by differential scanning microcalorimetry. J Mol Biol. 1992 Nov 20;228(2):347–350. doi: 10.1016/0022-2836(92)90824-4. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES