Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1998 Apr;7(4):897–905. doi: 10.1002/pro.5560070407

Heterogeneity of packing: structural approach.

N Kurochkina 1, G Privalov 1
PMCID: PMC2143988  PMID: 9568896

Abstract

Analysis of the heterogeneity of packing in proteins showed that different groups of the protein preferentially contribute to low- or high-density regions. Statistical distribution reveals the two preferable values for packing density in the form of two peaks. One peak occurs in the range of densities 0.55-0.65, the other occurs in the range 0.75-0.8. The high-density peak is originated primarily by high packing inside the hydrogen bonded backbone and to some extent by side chains. Polar/charged and apolar side chains both contribute to the low-density peak. The average packing density values of individual atomic groups significantly vary for backbone atoms as well as for side chain atoms. The carbonyl oxygen atoms of protein backbone and the end groups of side chains show lower packing density than the rest of the protein. The side-chain atomic groups of a secondary structure element when packed against the neighboring secondary structure element form stronger contacts with the side chains of this element than with its backbone. Analysis of the low-density regions around each buried peptide group was done for the set of proteins with different types of packing, including alpha-alpha, alpha-beta, and beta-beta packing. It was shown that cavities are regularly situated in the groove of secondary structure element packed against neighboring elements for all types of packing. Low density in the regions surrounding the peptide groups and the end groups of side chains can be explained by their positioning next to a cavity formed upon the association of secondary structure elements. The model proposed can be applied to the analysis of protein internal motions, mechanisms of cellular signal transduction, diffusion through protein matrix, and other events.

Full Text

The Full Text of this article is available as a PDF (4.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beardsley D. S., Kauzmann W. J. Local densities orthogonal to beta-sheet amide planes: patterns of packing in globular proteins. Proc Natl Acad Sci U S A. 1996 Apr 30;93(9):4448–4453. doi: 10.1073/pnas.93.9.4448. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Boheim G. Statistical analysis of alamethicin channels in black lipid membranes. J Membr Biol. 1974;19(3):277–303. doi: 10.1007/BF01869983. [DOI] [PubMed] [Google Scholar]
  3. Boylan D., Phillips G. N. Motions of tropomyosin: characterization of anisotropic motions and coupled displacements in crystals. Biophys J. 1986 Jan;49(1):76–78. doi: 10.1016/s0006-3495(86)83599-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chothia C., Levitt M., Richardson D. Helix to helix packing in proteins. J Mol Biol. 1981 Jan 5;145(1):215–250. doi: 10.1016/0022-2836(81)90341-7. [DOI] [PubMed] [Google Scholar]
  5. Chothia C. Structural invariants in protein folding. Nature. 1975 Mar 27;254(5498):304–308. doi: 10.1038/254304a0. [DOI] [PubMed] [Google Scholar]
  6. Deisenhofer J., Michel H. Nobel lecture. The photosynthetic reaction centre from the purple bacterium Rhodopseudomonas viridis. EMBO J. 1989 Aug;8(8):2149–2170. doi: 10.1002/j.1460-2075.1989.tb08338.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Eftink M. R., Ghiron C. A. Dynamics of a protein matrix revealed by fluorescence quenching. Proc Natl Acad Sci U S A. 1975 Sep;72(9):3290–3294. doi: 10.1073/pnas.72.9.3290. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Faure P., Micu A., Pérahia D., Doucet J., Smith J. C., Benoit J. P. Correlated intramolecular motions and diffuse X-ray scattering in lysozyme. Nat Struct Biol. 1994 Feb;1(2):124–128. doi: 10.1038/nsb0294-124. [DOI] [PubMed] [Google Scholar]
  9. Finney J. L. Volume occupation, environment and accessibility in proteins. The problem of the protein surface. J Mol Biol. 1975 Aug 25;96(4):721–732. doi: 10.1016/0022-2836(75)90148-5. [DOI] [PubMed] [Google Scholar]
  10. Gerstein M., Chothia C. Packing at the protein-water interface. Proc Natl Acad Sci U S A. 1996 Sep 17;93(19):10167–10172. doi: 10.1073/pnas.93.19.10167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Klapper M. H. On the nature of the protein interior. Biochim Biophys Acta. 1971 Mar 23;229(3):557–566. doi: 10.1016/0005-2795(71)90271-6. [DOI] [PubMed] [Google Scholar]
  12. Kuntz I. D. Tertiary structure in carboxypeptidase. J Am Chem Soc. 1972 Nov 29;94(24):8568–8572. doi: 10.1021/ja00779a046. [DOI] [PubMed] [Google Scholar]
  13. Lee B., Richards F. M. The interpretation of protein structures: estimation of static accessibility. J Mol Biol. 1971 Feb 14;55(3):379–400. doi: 10.1016/0022-2836(71)90324-x. [DOI] [PubMed] [Google Scholar]
  14. Perutz M. F., Mathews F. S. An x-ray study of azide methaemoglobin. J Mol Biol. 1966 Oct 28;21(1):199–202. doi: 10.1016/0022-2836(66)90088-x. [DOI] [PubMed] [Google Scholar]
  15. Richards F. M. Areas, volumes, packing and protein structure. Annu Rev Biophys Bioeng. 1977;6:151–176. doi: 10.1146/annurev.bb.06.060177.001055. [DOI] [PubMed] [Google Scholar]
  16. Richards F. M. Calculation of molecular volumes and areas for structures of known geometry. Methods Enzymol. 1985;115:440–464. doi: 10.1016/0076-6879(85)15032-9. [DOI] [PubMed] [Google Scholar]
  17. Richards F. M. The interpretation of protein structures: total volume, group volume distributions and packing density. J Mol Biol. 1974 Jan 5;82(1):1–14. doi: 10.1016/0022-2836(74)90570-1. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES