Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1998 May;7(5):1201–1207. doi: 10.1002/pro.5560070515

What should the Z-score of native protein structures be?

L Zhang 1, J Skolnick 1
PMCID: PMC2144000  PMID: 9605325

Abstract

The Z-score of a protein is defined as the energy separation between the native fold and the average of an ensemble of misfolds in the units of the standard deviation of the ensemble. The Z-score is often used as a way of testing the knowledge-based potentials for their ability to recognize the native fold from other alternatives. However, it is not known what range of values the Z-scores should have if one had a correct potential. Here, we offer an estimate of Z-scores extracted from calorimetric measurements of proteins. The energies obtained from these experimental data are compared with those from computer simulations of a lattice model protein. It is suggested that the Z-scores calculated from different knowledge-based potentials are generally too small in comparison with the experimental values.

Full Text

The Full Text of this article is available as a PDF (592.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bowie J. U., Lüthy R., Eisenberg D. A method to identify protein sequences that fold into a known three-dimensional structure. Science. 1991 Jul 12;253(5016):164–170. doi: 10.1126/science.1853201. [DOI] [PubMed] [Google Scholar]
  2. Bryngelson J. D., Onuchic J. N., Socci N. D., Wolynes P. G. Funnels, pathways, and the energy landscape of protein folding: a synthesis. Proteins. 1995 Mar;21(3):167–195. doi: 10.1002/prot.340210302. [DOI] [PubMed] [Google Scholar]
  3. Delarue M., Koehl P. Atomic environment energies in proteins defined from statistics of accessible and contact surface areas. J Mol Biol. 1995 Jun 9;249(3):675–690. doi: 10.1006/jmbi.1995.0328. [DOI] [PubMed] [Google Scholar]
  4. Gómez J., Hilser V. J., Xie D., Freire E. The heat capacity of proteins. Proteins. 1995 Aug;22(4):404–412. doi: 10.1002/prot.340220410. [DOI] [PubMed] [Google Scholar]
  5. Huang E. S., Subbiah S., Levitt M. Recognizing native folds by the arrangement of hydrophobic and polar residues. J Mol Biol. 1995 Oct 6;252(5):709–720. doi: 10.1006/jmbi.1995.0529. [DOI] [PubMed] [Google Scholar]
  6. Jones D. T., Thornton J. M. Potential energy functions for threading. Curr Opin Struct Biol. 1996 Apr;6(2):210–216. doi: 10.1016/s0959-440x(96)80076-5. [DOI] [PubMed] [Google Scholar]
  7. Kocher J. P., Rooman M. J., Wodak S. J. Factors influencing the ability of knowledge-based potentials to identify native sequence-structure matches. J Mol Biol. 1994 Feb 4;235(5):1598–1613. doi: 10.1006/jmbi.1994.1109. [DOI] [PubMed] [Google Scholar]
  8. Kolinski A., Galazka W., Skolnick J. On the origin of the cooperativity of protein folding: implications from model simulations. Proteins. 1996 Nov;26(3):271–287. doi: 10.1002/(SICI)1097-0134(199611)26:3<271::AID-PROT4>3.0.CO;2-H. [DOI] [PubMed] [Google Scholar]
  9. Kolinski A., Skolnick J. Monte Carlo simulations of protein folding. I. Lattice model and interaction scheme. Proteins. 1994 Apr;18(4):338–352. doi: 10.1002/prot.340180405. [DOI] [PubMed] [Google Scholar]
  10. Maiorov V. N., Crippen G. M. Contact potential that recognizes the correct folding of globular proteins. J Mol Biol. 1992 Oct 5;227(3):876–888. doi: 10.1016/0022-2836(92)90228-c. [DOI] [PubMed] [Google Scholar]
  11. Makhatadze G. I., Privalov P. L. Energetics of protein structure. Adv Protein Chem. 1995;47:307–425. doi: 10.1016/s0065-3233(08)60548-3. [DOI] [PubMed] [Google Scholar]
  12. Melo F., Feytmans E. Novel knowledge-based mean force potential at atomic level. J Mol Biol. 1997 Mar 21;267(1):207–222. doi: 10.1006/jmbi.1996.0868. [DOI] [PubMed] [Google Scholar]
  13. Mirny L., Domany E. Protein fold recognition and dynamics in the space of contact maps. Proteins. 1996 Dec;26(4):391–410. doi: 10.1002/(SICI)1097-0134(199612)26:4<391::AID-PROT3>3.0.CO;2-F. [DOI] [PubMed] [Google Scholar]
  14. Miyazawa S., Jernigan R. L. Residue-residue potentials with a favorable contact pair term and an unfavorable high packing density term, for simulation and threading. J Mol Biol. 1996 Mar 1;256(3):623–644. doi: 10.1006/jmbi.1996.0114. [DOI] [PubMed] [Google Scholar]
  15. Park B. H., Huang E. S., Levitt M. Factors affecting the ability of energy functions to discriminate correct from incorrect folds. J Mol Biol. 1997 Mar 7;266(4):831–846. doi: 10.1006/jmbi.1996.0809. [DOI] [PubMed] [Google Scholar]
  16. Pereira de Araújo A. F., Pochapsky T. C. Monte Carlo simulations of protein folding using inexact potentials: how accurate must parameters be in order to preserve the essential features of the energy landscape? Fold Des. 1996;1(4):299–314. doi: 10.1016/S1359-0278(96)00043-0. [DOI] [PubMed] [Google Scholar]
  17. Privalov P. L. Stability of proteins: small globular proteins. Adv Protein Chem. 1979;33:167–241. doi: 10.1016/s0065-3233(08)60460-x. [DOI] [PubMed] [Google Scholar]
  18. Shakhnovich E. I., Gutin A. M. Formation of unique structure in polypeptide chains. Theoretical investigation with the aid of a replica approach. Biophys Chem. 1989 Nov;34(3):187–199. doi: 10.1016/0301-4622(89)80058-4. [DOI] [PubMed] [Google Scholar]
  19. Sippl M. J. Boltzmann's principle, knowledge-based mean fields and protein folding. An approach to the computational determination of protein structures. J Comput Aided Mol Des. 1993 Aug;7(4):473–501. doi: 10.1007/BF02337562. [DOI] [PubMed] [Google Scholar]
  20. Sippl M. J. Knowledge-based potentials for proteins. Curr Opin Struct Biol. 1995 Apr;5(2):229–235. doi: 10.1016/0959-440x(95)80081-6. [DOI] [PubMed] [Google Scholar]
  21. Skolnick J., Jaroszewski L., Kolinski A., Godzik A. Derivation and testing of pair potentials for protein folding. When is the quasichemical approximation correct? Protein Sci. 1997 Mar;6(3):676–688. doi: 10.1002/pro.5560060317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Smith L. J., Fiebig K. M., Schwalbe H., Dobson C. M. The concept of a random coil. Residual structure in peptides and denatured proteins. Fold Des. 1996;1(5):R95–106. doi: 10.1016/S1359-0278(96)00046-6. [DOI] [PubMed] [Google Scholar]
  23. Thomas P. D., Dill K. A. Statistical potentials extracted from protein structures: how accurate are they? J Mol Biol. 1996 Mar 29;257(2):457–469. doi: 10.1006/jmbi.1996.0175. [DOI] [PubMed] [Google Scholar]
  24. Ulrich P., Scott W., van Gunsteren W. F., Torda A. E. Protein structure prediction force fields: parametrization with quasi-newtonian dynamics. Proteins. 1997 Mar;27(3):367–384. doi: 10.1002/(sici)1097-0134(199703)27:3<367::aid-prot5>3.0.co;2-a. [DOI] [PubMed] [Google Scholar]
  25. Zhang L., Skolnick J. How do potentials derived from structural databases relate to "true" potentials? Protein Sci. 1998 Jan;7(1):112–122. doi: 10.1002/pro.5560070112. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES