Abstract
To understand the role of the 23-amino acid signal sequence in the folding and stability of beta-lactamase, the precursor and a mutant beta-lactamase with a 19-amino acid signal sequence deletion were synthesized in vitro using an Escherichia coli cell-free coupled transcription/translation system. Approximately 30% of the newly synthesized full-length precursor and 60% of the deletion mutant polypeptides were terminated and released from the ribosomes as active enzyme. Activity of the pre-beta-lactamase, but not the mutant, was unstable at 37 degrees C, suggesting that the signal sequence causes the enzyme to unfold. This inactivation was independent of ATP. Pre-beta-lactamase activity was stabilized by lowering the temperature to 30 degrees C. Furthermore, addition of the molecular chaperones DnaK/J and GrpE, in the presence of ATP and Mg2+, restored the activity of the temperature-inactivated precursor. The precursor formed a stable complex with DnaK and GrpE. Both ATP and DnaJ were required for recovery of enzymatic activity, indicating that DnaJ may bind transiently to the complex. These results suggest that the signal sequence of the pre-beta-lactamase causes a temperature-dependent unfolding of the synthesized enzyme and that DnaK/J and GrpE interact with unfolded pre-beta-lactamase to promote refolding of the protein into its native, enzymatically active conformation.
Full Text
The Full Text of this article is available as a PDF (7.8 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bochkareva E. S., Lissin N. M., Girshovich A. S. Transient association of newly synthesized unfolded proteins with the heat-shock GroEL protein. Nature. 1988 Nov 17;336(6196):254–257. doi: 10.1038/336254a0. [DOI] [PubMed] [Google Scholar]
- Bowden G. A., Paredes A. M., Georgiou G. Structure and morphology of protein inclusion bodies in Escherichia coli. Biotechnology (N Y) 1991 Aug;9(8):725–730. doi: 10.1038/nbt0891-725. [DOI] [PubMed] [Google Scholar]
- Hoffmann H. J., Lyman S. K., Lu C., Petit M. A., Echols H. Activity of the Hsp70 chaperone complex--DnaK, DnaJ, and GrpE--in initiating phage lambda DNA replication by sequestering and releasing lambda P protein. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):12108–12111. doi: 10.1073/pnas.89.24.12108. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kudlicki W., Odom O. W., Kramer G., Hardesty B. Chaperone-dependent folding and activation of ribosome-bound nascent rhodanese. Analysis by fluorescence. J Mol Biol. 1994 Dec 2;244(3):319–331. doi: 10.1006/jmbi.1994.1732. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Laminet A. A., Kumamoto C. A., Plückthun A. Folding in vitro and transport in vivo of pre-beta-lactamase are SecB independent. Mol Microbiol. 1991 Jan;5(1):117–122. [PubMed] [Google Scholar]
- Laminet A. A., Plückthun A. The precursor of beta-lactamase: purification, properties and folding kinetics. EMBO J. 1989 May;8(5):1469–1477. doi: 10.1002/j.1460-2075.1989.tb03530.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laminet A. A., Ziegelhoffer T., Georgopoulos C., Plückthun A. The Escherichia coli heat shock proteins GroEL and GroES modulate the folding of the beta-lactamase precursor. EMBO J. 1990 Jul;9(7):2315–2319. doi: 10.1002/j.1460-2075.1990.tb07403.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Langer T., Lu C., Echols H., Flanagan J., Hayer M. K., Hartl F. U. Successive action of DnaK, DnaJ and GroEL along the pathway of chaperone-mediated protein folding. Nature. 1992 Apr 23;356(6371):683–689. doi: 10.1038/356683a0. [DOI] [PubMed] [Google Scholar]
- Levy E. J., McCarty J., Bukau B., Chirico W. J. Conserved ATPase and luciferase refolding activities between bacteria and yeast Hsp70 chaperones and modulators. FEBS Lett. 1995 Jul 24;368(3):435–440. doi: 10.1016/0014-5793(95)00704-d. [DOI] [PubMed] [Google Scholar]
- Luirink J., High S., Wood H., Giner A., Tollervey D., Dobberstein B. Signal-sequence recognition by an Escherichia coli ribonucleoprotein complex. Nature. 1992 Oct 22;359(6397):741–743. doi: 10.1038/359741a0. [DOI] [PubMed] [Google Scholar]
- Luirink J., ten Hagen-Jongman C. M., van der Weijden C. C., Oudega B., High S., Dobberstein B., Kusters R. An alternative protein targeting pathway in Escherichia coli: studies on the role of FtsY. EMBO J. 1994 May 15;13(10):2289–2296. doi: 10.1002/j.1460-2075.1994.tb06511.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- O'Callaghan C. H., Morris A., Kirby S. M., Shingler A. H. Novel method for detection of beta-lactamases by using a chromogenic cephalosporin substrate. Antimicrob Agents Chemother. 1972 Apr;1(4):283–288. doi: 10.1128/aac.1.4.283. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Plückthun A., Knowles J. R. The consequences of stepwise deletions from the signal-processing site of beta-lactamase. J Biol Chem. 1987 Mar 25;262(9):3951–3957. [PubMed] [Google Scholar]
- Schönfeld H. J., Schmidt D., Schröder H., Bukau B. The DnaK chaperone system of Escherichia coli: quaternary structures and interactions of the DnaK and GrpE components. J Biol Chem. 1995 Feb 3;270(5):2183–2189. doi: 10.1074/jbc.270.5.2183. [DOI] [PubMed] [Google Scholar]
- Sherman M. Y., Goldberg A. L. Formation in vitro of complexes between an abnormal fusion protein and the heat shock proteins from Escherichia coli and yeast mitochondria. J Bacteriol. 1991 Nov;173(22):7249–7256. doi: 10.1128/jb.173.22.7249-7256.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wawrzynów A., Banecki B., Wall D., Liberek K., Georgopoulos C., Zylicz M. ATP hydrolysis is required for the DnaJ-dependent activation of DnaK chaperone for binding to both native and denatured protein substrates. J Biol Chem. 1995 Aug 18;270(33):19307–19311. doi: 10.1074/jbc.270.33.19307. [DOI] [PubMed] [Google Scholar]
- Zubay G. In vitro synthesis of protein in microbial systems. Annu Rev Genet. 1973;7:267–287. doi: 10.1146/annurev.ge.07.120173.001411. [DOI] [PubMed] [Google Scholar]
