Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1998 May;7(5):1083–1091. doi: 10.1002/pro.5560070502

Calculated electrostatic gradients in recombinant human H-chain ferritin.

T Douglas 1, D R Ripoll 1
PMCID: PMC2144004  PMID: 9605313

Abstract

Calculations to determine the electrostatic potential of the iron storage protein ferritin, using the human H-chain homopolymer (HuHF), reveal novel aspects of the protein. Some of the charge density correlates well with regions previously identified as active sites in the protein. The three-fold channels, the putative ferroxidase sites, and the nucleation sites all show expectedly negative values of the electrostatic potential. However, the outer entrance to the three-fold channels are surrounded by regions of positive potential, creating an electrostatic field directed toward the interior cavity. This electrostatic gradient provides a guidance mechanism for cations entering the protein cavity, indicating the three-fold channel as the major entrance to the protein. Pathways from the three-fold channels, indicated by electrostatic gradients on the inner surface, lead to the ferroxidase center, the nucleation center and to the interior entrance to the four-fold channel. Six glutamic acid residues at the nucleation site give rise to a region of very negative potential, surrounding a small positively charged center due to the presence of two conserved arginine residues, R63, in close proximity (4.9 A), suggesting that electrostatic fields could also play a role in the nucleation process. A large gradient in the electrostatic potential at the 4-fold channel gives rise to a field directed outward from the internal cavity, indicating the possibility that this channel functions to expel cations from inside the protein. The 4-fold channel could therefore provide an exit pathway for protons during mineralization, or iron leaving the protein cavity during de-mineralization.

Full Text

The Full Text of this article is available as a PDF (10.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Antosiewicz J., McCammon J. A., Wlodek S. T., Gilson M. K. Simulation of charge-mutant acetylcholinesterases. Biochemistry. 1995 Apr 4;34(13):4211–4219. doi: 10.1021/bi00013a009. [DOI] [PubMed] [Google Scholar]
  2. Ford G. C., Harrison P. M., Rice D. W., Smith J. M., Treffry A., White J. L., Yariv J. Ferritin: design and formation of an iron-storage molecule. Philos Trans R Soc Lond B Biol Sci. 1984 Feb 13;304(1121):551–565. doi: 10.1098/rstb.1984.0046. [DOI] [PubMed] [Google Scholar]
  3. Getzoff E. D., Cabelli D. E., Fisher C. L., Parge H. E., Viezzoli M. S., Banci L., Hallewell R. A. Faster superoxide dismutase mutants designed by enhancing electrostatic guidance. Nature. 1992 Jul 23;358(6384):347–351. doi: 10.1038/358347a0. [DOI] [PubMed] [Google Scholar]
  4. Getzoff E. D., Tainer J. A., Weiner P. K., Kollman P. A., Richardson J. S., Richardson D. C. Electrostatic recognition between superoxide and copper, zinc superoxide dismutase. Nature. 1983 Nov 17;306(5940):287–290. doi: 10.1038/306287a0. [DOI] [PubMed] [Google Scholar]
  5. Gilson M. K., Honig B. H. Calculation of electrostatic potentials in an enzyme active site. Nature. 1987 Nov 5;330(6143):84–86. doi: 10.1038/330084a0. [DOI] [PubMed] [Google Scholar]
  6. Gilson M. K., Straatsma T. P., McCammon J. A., Ripoll D. R., Faerman C. H., Axelsen P. H., Silman I., Sussman J. L. Open "back door" in a molecular dynamics simulation of acetylcholinesterase. Science. 1994 Mar 4;263(5151):1276–1278. doi: 10.1126/science.8122110. [DOI] [PubMed] [Google Scholar]
  7. Harrison P. M., Arosio P. The ferritins: molecular properties, iron storage function and cellular regulation. Biochim Biophys Acta. 1996 Jul 31;1275(3):161–203. doi: 10.1016/0005-2728(96)00022-9. [DOI] [PubMed] [Google Scholar]
  8. Hempstead P. D., Yewdall S. J., Fernie A. R., Lawson D. M., Artymiuk P. J., Rice D. W., Ford G. C., Harrison P. M. Comparison of the three-dimensional structures of recombinant human H and horse L ferritins at high resolution. J Mol Biol. 1997 May 2;268(2):424–448. doi: 10.1006/jmbi.1997.0970. [DOI] [PubMed] [Google Scholar]
  9. Klapper I., Hagstrom R., Fine R., Sharp K., Honig B. Focusing of electric fields in the active site of Cu-Zn superoxide dismutase: effects of ionic strength and amino-acid modification. Proteins. 1986 Sep;1(1):47–59. doi: 10.1002/prot.340010109. [DOI] [PubMed] [Google Scholar]
  10. Lawson D. M., Artymiuk P. J., Yewdall S. J., Smith J. M., Livingstone J. C., Treffry A., Luzzago A., Levi S., Arosio P., Cesareni G. Solving the structure of human H ferritin by genetically engineering intermolecular crystal contacts. Nature. 1991 Feb 7;349(6309):541–544. doi: 10.1038/349541a0. [DOI] [PubMed] [Google Scholar]
  11. Levi S., Corsi B., Rovida E., Cozzi A., Santambrogio P., Albertini A., Arosio P. Construction of a ferroxidase center in human ferritin L-chain. J Biol Chem. 1994 Dec 2;269(48):30334–30339. [PubMed] [Google Scholar]
  12. Levi S., Luzzago A., Cesareni G., Cozzi A., Franceschinelli F., Albertini A., Arosio P. Mechanism of ferritin iron uptake: activity of the H-chain and deletion mapping of the ferro-oxidase site. A study of iron uptake and ferro-oxidase activity of human liver, recombinant H-chain ferritins, and of two H-chain deletion mutants. J Biol Chem. 1988 Dec 5;263(34):18086–18092. [PubMed] [Google Scholar]
  13. Levi S., Santambrogio P., Corsi B., Cozzi A., Arosio P. Evidence that residues exposed on the three-fold channels have active roles in the mechanism of ferritin iron incorporation. Biochem J. 1996 Jul 15;317(Pt 2):467–473. doi: 10.1042/bj3170467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Loewenthal R., Sancho J., Reinikainen T., Fersht A. R. Long-range surface charge-charge interactions in proteins. Comparison of experimental results with calculations from a theoretical method. J Mol Biol. 1993 Jul 20;232(2):574–583. doi: 10.1006/jmbi.1993.1412. [DOI] [PubMed] [Google Scholar]
  15. Mann S., Archibald D. D., Didymus J. M., Douglas T., Heywood B. R., Meldrum F. C., Reeves N. J. Crystallization at Inorganic-organic Interfaces: Biominerals and Biomimetic Synthesis. Science. 1993 Sep 3;261(5126):1286–1292. doi: 10.1126/science.261.5126.1286. [DOI] [PubMed] [Google Scholar]
  16. Michaux M. A., Dautant A., Gallois B., Granier T., d'Estaintot B. L., Précigoux G. Structural investigation of the complexation properties between horse spleen apoferritin and metalloporphyrins. Proteins. 1996 Mar;24(3):314–321. doi: 10.1002/(SICI)1097-0134(199603)24:3<314::AID-PROT4>3.0.CO;2-G. [DOI] [PubMed] [Google Scholar]
  17. Russell S. T., Warshel A. Calculations of electrostatic energies in proteins. The energetics of ionized groups in bovine pancreatic trypsin inhibitor. J Mol Biol. 1985 Sep 20;185(2):389–404. doi: 10.1016/0022-2836(85)90411-5. [DOI] [PubMed] [Google Scholar]
  18. Santambrogio P., Levi S., Cozzi A., Corsi B., Arosio P. Evidence that the specificity of iron incorporation into homopolymers of human ferritin L- and H-chains is conferred by the nucleation and ferroxidase centres. Biochem J. 1996 Feb 15;314(Pt 1):139–144. doi: 10.1042/bj3140139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sines J. J., Allison S. A., McCammon J. A. Point charge distributions and electrostatic steering in enzyme/substrate encounter: Brownian dynamics of modified copper/zinc superoxide dismutases. Biochemistry. 1990 Oct 9;29(40):9403–9412. doi: 10.1021/bi00492a014. [DOI] [PubMed] [Google Scholar]
  20. Treffry A., Bauminger E. R., Hechel D., Hodson N. W., Nowik I., Yewdall S. J., Harrison P. M. Defining the roles of the threefold channels in iron uptake, iron oxidation and iron-core formation in ferritin: a study aided by site-directed mutagenesis. Biochem J. 1993 Dec 15;296(Pt 3):721–728. doi: 10.1042/bj2960721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Treffry A., Harrison P. M., Luzzago A., Cesareni G. Recombinant H-chain ferritins: effects of changes in the 3-fold channels. FEBS Lett. 1989 Apr 24;247(2):268–272. doi: 10.1016/0014-5793(89)81350-x. [DOI] [PubMed] [Google Scholar]
  22. Treffry A., Zhao Z., Quail M. A., Guest J. R., Harrison P. M. Dinuclear center of ferritin: studies of iron binding and oxidation show differences in the two iron sites. Biochemistry. 1997 Jan 14;36(2):432–441. doi: 10.1021/bi961830l. [DOI] [PubMed] [Google Scholar]
  23. Treffry A., Zhao Z., Quail M. A., Guest J. R., Harrison P. M. Iron(II) oxidation by H chain ferritin: evidence from site-directed mutagenesis that a transient blue species is formed at the dinuclear iron center. Biochemistry. 1995 Nov 21;34(46):15204–15213. doi: 10.1021/bi00046a028. [DOI] [PubMed] [Google Scholar]
  24. Trikha J., Theil E. C., Allewell N. M. High resolution crystal structures of amphibian red-cell L ferritin: potential roles for structural plasticity and solvation in function. J Mol Biol. 1995 May 19;248(5):949–967. doi: 10.1006/jmbi.1995.0274. [DOI] [PubMed] [Google Scholar]
  25. Trikha J., Waldo G. S., Lewandowski F. A., Ha Y., Theil E. C., Weber P. C., Allewell N. M. Crystallization and structural analysis of bullfrog red cell L-subunit ferritins. Proteins. 1994 Feb;18(2):107–118. doi: 10.1002/prot.340180204. [DOI] [PubMed] [Google Scholar]
  26. Wade V. J., Levi S., Arosio P., Treffry A., Harrison P. M., Mann S. Influence of site-directed modifications on the formation of iron cores in ferritin. J Mol Biol. 1991 Oct 20;221(4):1443–1452. doi: 10.1016/0022-2836(91)90944-2. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES