Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1998 May;7(5):1071–1082. doi: 10.1002/pro.5560070501

Refolding rate of stability-enhanced cytochrome c is independent of thermodynamic driving force.

W A McGee 1, B T Nall 1
PMCID: PMC2144008  PMID: 9605312

Abstract

N52I iso-2 cytochrome c is a variant of yeast iso-2 cytochrome c in which asparagine substitutes for isoleucine 52 in an alpha helical segment composed of residues 49-56. The N52I substitution results in a significant increase in both stability and cooperativity of equilibrium unfolding, and acts as a "global suppressor" of destabilizing mutations. The equilibrium m-value for denaturant-induced unfolding of N52I iso-2 increases by 30%, a surprisingly large amount for a single residue substitution. The folding/unfolding kinetics for N52I iso-2 have been measured by stopped-flow mixing and by manual mixing, and are compared to the kinetics of folding/unfolding of wild-type protein, iso-2 cytochrome c. The results show that the observable folding rate and the guanidine hydrochloride dependence of the folding rate are the same for iso-2 and N52I iso-2, despite the greater thermodynamic stability of N52I iso-2. Thus, there is no linear free-energy relationship between mutation-induced changes in stability and observable refolding rates. However, for N52I iso-2 the unfolding rate is slower and the guanidine hydrochloride dependence of the unfolding rate is smaller than for iso-2. The differences in the denaturant dependence of the unfolding rates suggest that the N52I substitution decreases the change in the solvent accessible hydrophobic surface between the native state and the transition state. Two aspects of the results are inconsistent with a two-state folding/unfolding mechanism and imply the presence of folding intermediates: (1) observable refolding rate constants calculated from the two-state mechanism by combining equilibrium data and unfolding rate measurements deviate from the observed refolding rate constants; (2) kinetically unresolved signal changes ("burst phase") are observed for both N52I iso-2 and iso-2 refolding. The "burst phase" amplitude is larger for N52I iso-2 than for iso-2, suggesting that the intermediates formed during the "burst phase" are stabilized by the N52I substitution.

Full Text

The Full Text of this article is available as a PDF (2.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berghuis A. M., Guillemette J. G., McLendon G., Sherman F., Smith M., Brayer G. D. The role of a conserved internal water molecule and its associated hydrogen bond network in cytochrome c. J Mol Biol. 1994 Feb 25;236(3):786–799. doi: 10.1006/jmbi.1994.1189. [DOI] [PubMed] [Google Scholar]
  2. Berroteran R. W., Hampsey M. Genetic analysis of yeast iso-1-cytochrome c structural requirements: suppression of Gly6 replacements by an Asn52----Ile replacement. Arch Biochem Biophys. 1991 Jul;288(1):261–269. doi: 10.1016/0003-9861(91)90193-m. [DOI] [PubMed] [Google Scholar]
  3. Colón W., Elöve G. A., Wakem L. P., Sherman F., Roder H. Side chain packing of the N- and C-terminal helices plays a critical role in the kinetics of cytochrome c folding. Biochemistry. 1996 Apr 30;35(17):5538–5549. doi: 10.1021/bi960052u. [DOI] [PubMed] [Google Scholar]
  4. Das G., Hickey D. R., McLendon D., McLendon G., Sherman F. Dramatic thermostabilization of yeast iso-1-cytochrome c by an asparagine----isoleucine replacement at position 57. Proc Natl Acad Sci U S A. 1989 Jan;86(2):496–499. doi: 10.1073/pnas.86.2.496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Doyle D. F., Waldner J. C., Parikh S., Alcazar-Roman L., Pielak G. J. Changing the transition state for protein (Un) folding. Biochemistry. 1996 Jun 11;35(23):7403–7411. doi: 10.1021/bi960409u. [DOI] [PubMed] [Google Scholar]
  6. Elöve G. A., Bhuyan A. K., Roder H. Kinetic mechanism of cytochrome c folding: involvement of the heme and its ligands. Biochemistry. 1994 Jun 7;33(22):6925–6935. doi: 10.1021/bi00188a023. [DOI] [PubMed] [Google Scholar]
  7. Elöve G. A., Chaffotte A. F., Roder H., Goldberg M. E. Early steps in cytochrome c folding probed by time-resolved circular dichroism and fluorescence spectroscopy. Biochemistry. 1992 Aug 4;31(30):6876–6883. doi: 10.1021/bi00145a003. [DOI] [PubMed] [Google Scholar]
  8. Gao Y., McLendon G., Pielak G. J., Williams R. J. Electron-proton coupling in cytochrome c studied using protein variants. Eur J Biochem. 1992 Feb 15;204(1):337–352. doi: 10.1111/j.1432-1033.1992.tb16642.x. [DOI] [PubMed] [Google Scholar]
  9. Hickey D. R., Berghuis A. M., Lafond G., Jaeger J. A., Cardillo T. S., McLendon D., Das G., Sherman F., Brayer G. D., McLendon G. Enhanced thermodynamic stabilities of yeast iso-1-cytochromes c with amino acid replacements at positions 52 and 102. J Biol Chem. 1991 Jun 25;266(18):11686–11694. [PubMed] [Google Scholar]
  10. Ikai A., Fish W. W., Tanford C. Kinetics of unfolding and refolding of proteins. II. Results for cytochrome c. J Mol Biol. 1973 Jan 10;73(2):165–184. doi: 10.1016/0022-2836(73)90321-5. [DOI] [PubMed] [Google Scholar]
  11. Khorasanizadeh S., Peters I. D., Roder H. Evidence for a three-state model of protein folding from kinetic analysis of ubiquitin variants with altered core residues. Nat Struct Biol. 1996 Feb;3(2):193–205. doi: 10.1038/nsb0296-193. [DOI] [PubMed] [Google Scholar]
  12. Knapp J. A., Pace C. N. Guanidine hydrochloride and acid denaturation of horse, cow, and Candida krusei cytochromes c. Biochemistry. 1974 Mar 12;13(6):1289–1294. doi: 10.1021/bi00703a036. [DOI] [PubMed] [Google Scholar]
  13. Komar-Panicucci S., Weis D., Bakker G., Qiao T., Sherman F., McLendon G. Thermodynamics of the equilibrium unfolding of oxidized and reduced Saccharomyces cerevisiae iso-1-cytochromes c. Biochemistry. 1994 Aug 30;33(34):10556–10560. doi: 10.1021/bi00200a042. [DOI] [PubMed] [Google Scholar]
  14. Louie G. V., Brayer G. D. High-resolution refinement of yeast iso-1-cytochrome c and comparisons with other eukaryotic cytochromes c. J Mol Biol. 1990 Jul 20;214(2):527–555. doi: 10.1016/0022-2836(90)90197-T. [DOI] [PubMed] [Google Scholar]
  15. Matouschek A., Fersht A. R. Application of physical organic chemistry to engineered mutants of proteins: Hammond postulate behavior in the transition state of protein folding. Proc Natl Acad Sci U S A. 1993 Aug 15;90(16):7814–7818. doi: 10.1073/pnas.90.16.7814. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Matouschek A., Kellis J. T., Jr, Serrano L., Bycroft M., Fersht A. R. Transient folding intermediates characterized by protein engineering. Nature. 1990 Aug 2;346(6283):440–445. doi: 10.1038/346440a0. [DOI] [PubMed] [Google Scholar]
  17. Matouschek A., Kellis J. T., Jr, Serrano L., Fersht A. R. Mapping the transition state and pathway of protein folding by protein engineering. Nature. 1989 Jul 13;340(6229):122–126. doi: 10.1038/340122a0. [DOI] [PubMed] [Google Scholar]
  18. Matthews J. M., Fersht A. R. Exploring the energy surface of protein folding by structure-reactivity relationships and engineered proteins: observation of Hammond behavior for the gross structure of the transition state and anti-Hammond behavior for structural elements for unfolding/folding of barnase. Biochemistry. 1995 May 23;34(20):6805–6814. doi: 10.1021/bi00020a027. [DOI] [PubMed] [Google Scholar]
  19. McGee W. A., Rosell F. I., Liggins J. R., Rodriguez-Ghidarpour S., Luo Y., Chen J., Brayer G. D., Mauk A. G., Nall B. T. Thermodynamic cycles as probes of structure in unfolded proteins. Biochemistry. 1996 Feb 13;35(6):1995–2007. doi: 10.1021/bi951228f. [DOI] [PubMed] [Google Scholar]
  20. Murphy M. E., Nall B. T., Brayer G. D. Structure determination and analysis of yeast iso-2-cytochrome c and a composite mutant protein. J Mol Biol. 1992 Sep 5;227(1):160–176. doi: 10.1016/0022-2836(92)90689-h. [DOI] [PubMed] [Google Scholar]
  21. Myers J. K., Pace C. N., Scholtz J. M. Denaturant m values and heat capacity changes: relation to changes in accessible surface areas of protein unfolding. Protein Sci. 1995 Oct;4(10):2138–2148. doi: 10.1002/pro.5560041020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Nall B. T., Osterhout J. J., Jr, Ramdas L. pH dependence of folding of iso-2-cytochrome c. Biochemistry. 1988 Sep 20;27(19):7310–7314. doi: 10.1021/bi00419a020. [DOI] [PubMed] [Google Scholar]
  23. Nall B. T. Structural intermediates in folding of yeast iso-2 cytochrome c. Biochemistry. 1983 Mar 15;22(6):1423–1429. doi: 10.1021/bi00275a016. [DOI] [PubMed] [Google Scholar]
  24. Osterhout J. J., Jr, Nall B. T. Slow refolding kinetics in yeast iso-2 cytochrome c. Biochemistry. 1985 Dec 31;24(27):7999–8005. doi: 10.1021/bi00348a024. [DOI] [PubMed] [Google Scholar]
  25. Pace C. N. Determination and analysis of urea and guanidine hydrochloride denaturation curves. Methods Enzymol. 1986;131:266–280. doi: 10.1016/0076-6879(86)31045-0. [DOI] [PubMed] [Google Scholar]
  26. Parker M. J., Spencer J., Clarke A. R. An integrated kinetic analysis of intermediates and transition states in protein folding reactions. J Mol Biol. 1995 Nov 10;253(5):771–786. doi: 10.1006/jmbi.1995.0590. [DOI] [PubMed] [Google Scholar]
  27. Pierce M. M., Nall B. T. Fast folding of cytochrome c. Protein Sci. 1997 Mar;6(3):618–627. doi: 10.1002/pro.5560060311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Rose G. D., Geselowitz A. R., Lesser G. J., Lee R. H., Zehfus M. H. Hydrophobicity of amino acid residues in globular proteins. Science. 1985 Aug 30;229(4716):834–838. doi: 10.1126/science.4023714. [DOI] [PubMed] [Google Scholar]
  29. Santoro M. M., Bolen D. W. Unfolding free energy changes determined by the linear extrapolation method. 1. Unfolding of phenylmethanesulfonyl alpha-chymotrypsin using different denaturants. Biochemistry. 1988 Oct 18;27(21):8063–8068. doi: 10.1021/bi00421a014. [DOI] [PubMed] [Google Scholar]
  30. Schindler T., Herrler M., Marahiel M. A., Schmid F. X. Extremely rapid protein folding in the absence of intermediates. Nat Struct Biol. 1995 Aug;2(8):663–673. doi: 10.1038/nsb0895-663. [DOI] [PubMed] [Google Scholar]
  31. Shortle D., Lin B. Genetic analysis of staphylococcal nuclease: identification of three intragenic "global" suppressors of nuclease-minus mutations. Genetics. 1985 Aug;110(4):539–555. doi: 10.1093/genetics/110.4.539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sosnick T. R., Mayne L., Hiller R., Englander S. W. The barriers in protein folding. Nat Struct Biol. 1994 Mar;1(3):149–156. doi: 10.1038/nsb0394-149. [DOI] [PubMed] [Google Scholar]
  33. Sosnick T. R., Shtilerman M. D., Mayne L., Englander S. W. Ultrafast signals in protein folding and the polypeptide contracted state. Proc Natl Acad Sci U S A. 1997 Aug 5;94(16):8545–8550. doi: 10.1073/pnas.94.16.8545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Tsong T. Y. An acid induced conformational transition of denatured cytochrome c in urea and guanidine hydrochloride solutions. Biochemistry. 1975 Apr 8;14(7):1542–1547. doi: 10.1021/bi00678a031. [DOI] [PubMed] [Google Scholar]
  35. Tsong T. Y. Ferricytochrome c chain folding measured by the energy transfer of tryptophan 59 to the heme group. Biochemistry. 1976 Dec 14;15(25):5467–5473. doi: 10.1021/bi00670a007. [DOI] [PubMed] [Google Scholar]
  36. Veeraraghavan S., Rodriguez-Ghidarpour S., MacKinnon C., McGee W. A., Pierce M. M., Nall B. T. Prolyl isomerase as a probe of stability of slow-folding intermediates. Biochemistry. 1995 Oct 3;34(39):12892–12902. doi: 10.1021/bi00039a052. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES