Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1998 May;7(5):1172–1179. doi: 10.1002/pro.5560070511

Topology of sarcoplasmic reticulum Ca2+-ATPase: an infrared study of thermal denaturation and limited proteolysis.

I Echabe 1, U Dornberger 1, A Prado 1, F M Goñi 1, J L Arrondo 1
PMCID: PMC2144010  PMID: 9605321

Abstract

Sarcoplasmic reticulum Ca2+-ATPase structure and organization in the membrane has been studied by infrared spectroscopy by decomposition of the amide I band. Besides the component bands assignable to secondary structure elements such as alpha-helix, beta-sheet, etc...., two unusual bands, one at 1,645 cm(-1) in H2O buffer and the other at 1,625 cm(-1) in D2O buffer are present. By perturbing the protein using temperature and limited proteolysis, the band at 1,645 cm(-1) is tentatively assigned to alpha-helical segments located in the cytoplasmic domain and coupled to beta-sheet structure, whereas the band at 1,625 cm(-1) arises probably from monomer-monomer contacts in the native oligomeric protein. The secondary structure obtained is 33% alpha-helical segments in the transmembrane plus stalk domain; 20% alpha-helix and 22% beta-sheet in the cytoplasmic domain plus 19% turns and 6% unordered structure. Thermal unfolding of Ca2+-ATPase is a complex process that cannot be described as a two-state denaturation. The results obtained are compatible with the idea that the protein is an oligomer at room temperature. The loss of the 1,625 cm(-1) band upon heating would be consistent with a disruption of the oligomers in a process that later gives rise to aggregates (appearance of the 1,618 cm(-1) band). This picture would also be compatible with early results suggesting that processes governing Ca2+ accumulation and ATPase activity are uncoupled at temperatures above 37 degrees C, so that while ATPase activity proceeds at high rates, Ca2+ accumulation is inhibited.

Full Text

The Full Text of this article is available as a PDF (2.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersen J. P. Monomer-oligomer equilibrium of sarcoplasmic reticulum Ca-ATPase and the role of subunit interaction in the Ca2+ pump mechanism. Biochim Biophys Acta. 1989 Jan 18;988(1):47–72. doi: 10.1016/0304-4157(89)90003-8. [DOI] [PubMed] [Google Scholar]
  2. Arrondo J. L., Castresana J., Valpuesta J. M., Goñi F. M. Structure and thermal denaturation of crystalline and noncrystalline cytochrome oxidase as studied by infrared spectroscopy. Biochemistry. 1994 Sep 27;33(38):11650–11655. doi: 10.1021/bi00204a029. [DOI] [PubMed] [Google Scholar]
  3. Arrondo J. L., Mantsch H. H., Mullner N., Pikula S., Martonosi A. Infrared spectroscopic characterization of the structural changes connected with the E1----E2 transition in the Ca2+-ATPase of sarcoplasmic reticulum. J Biol Chem. 1987 Jul 5;262(19):9037–9043. [PubMed] [Google Scholar]
  4. Arrondo J. L., Muga A., Castresana J., Goñi F. M. Quantitative studies of the structure of proteins in solution by Fourier-transform infrared spectroscopy. Prog Biophys Mol Biol. 1993;59(1):23–56. doi: 10.1016/0079-6107(93)90006-6. [DOI] [PubMed] [Google Scholar]
  5. Barth A., Kreutz W., Mäntele W. Changes of protein structure, nucleotide microenvironment, and Ca(2+)-binding states in the catalytic cycle of sarcoplasmic reticulum Ca(2+)-ATPase: investigation of nucleotide binding, phosphorylation and phosphoenzyme conversion by FTIR difference spectroscopy. Biochim Biophys Acta. 1994 Aug 24;1194(1):75–91. doi: 10.1016/0005-2736(94)90205-4. [DOI] [PubMed] [Google Scholar]
  6. Barth A., von Germar F., Kreutz W., Mäntele W. Time-resolved infrared spectroscopy of the Ca2+-ATPase. The enzyme at work. J Biol Chem. 1996 Nov 29;271(48):30637–30646. doi: 10.1074/jbc.271.48.30637. [DOI] [PubMed] [Google Scholar]
  7. Bañuelos S., Arrondo J. L., Goñi F. M., Pifat G. Surface-core relationships in human low density lipoprotein as studied by infrared spectroscopy. J Biol Chem. 1995 Apr 21;270(16):9192–9196. doi: 10.1074/jbc.270.16.9192. [DOI] [PubMed] [Google Scholar]
  8. Byler D. M., Susi H. Examination of the secondary structure of proteins by deconvolved FTIR spectra. Biopolymers. 1986 Mar;25(3):469–487. doi: 10.1002/bip.360250307. [DOI] [PubMed] [Google Scholar]
  9. Casal H. L., Cameron D. G., Smith I. C., Mantsch H. H. Acholeplasma laidlawii membranes: a Fourier transform infrared study of the influence of protein on lipid organization and dynamics. Biochemistry. 1980 Feb 5;19(3):444–451. doi: 10.1021/bi00544a007. [DOI] [PubMed] [Google Scholar]
  10. Corbalán-García S., Teruel J. A., Villalaín J., Gómez-Fernández J. C. Extensive proteolytic digestion of the (Ca2+ + Mg2+)-ATPase from sarcoplasmic reticulum leads to a highly hydrophobic proteinaceous residue with a mainly alpha-helical structure. Biochemistry. 1994 Jul 12;33(27):8247–8254. doi: 10.1021/bi00193a011. [DOI] [PubMed] [Google Scholar]
  11. Cortijo M., Alonso A., Gomez-Fernandez J. C., Chapman D. Intrinsic protein-lipid interactions. Infrared spectroscopic studies of gramicidin A, bacteriorhodopsin and Ca2+-ATPase in biomembranes and reconstituted systems. J Mol Biol. 1982 Jun 5;157(4):597–618. doi: 10.1016/0022-2836(82)90501-0. [DOI] [PubMed] [Google Scholar]
  12. Earnest T. N., Herzfeld J., Rothschild K. J. Polarized Fourier transform infrared spectroscopy of bacteriorhodopsin. Transmembrane alpha helices are resistant to hydrogen/deuterium exchange. Biophys J. 1990 Dec;58(6):1539–1546. doi: 10.1016/S0006-3495(90)82498-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Echabe I., Haltia T., Freire E., Goñi F. M., Arrondo J. L. Subunit III of cytochrome c oxidase influences the conformation of subunits I and II: an infrared study. Biochemistry. 1995 Oct 17;34(41):13565–13569. doi: 10.1021/bi00041a036. [DOI] [PubMed] [Google Scholar]
  14. Fabian H., Naumann D., Misselwitz R., Ristau O., Gerlach D., Welfle H. Secondary structure of streptokinase in aqueous solution: a Fourier transform infrared spectroscopic study. Biochemistry. 1992 Jul 21;31(28):6532–6538. doi: 10.1021/bi00143a024. [DOI] [PubMed] [Google Scholar]
  15. Goormaghtigh E., Vigneron L., Scarborough G. A., Ruysschaert J. M. Tertiary conformational changes of the Neurospora crassa plasma membrane H(+)-ATPase monitored by hydrogen/deuterium exchange kinetics. A Fourier transformed infrared spectroscopy approach. J Biol Chem. 1994 Nov 4;269(44):27409–27413. [PubMed] [Google Scholar]
  16. Görne-Tschelnokow U., Strecker A., Kaduk C., Naumann D., Hucho F. The transmembrane domains of the nicotinic acetylcholine receptor contain alpha-helical and beta structures. EMBO J. 1994 Jan 15;13(2):338–341. doi: 10.1002/j.1460-2075.1994.tb06266.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Haltia T., Semo N., Arrondo J. L., Goñi F. M., Freire E. Thermodynamic and structural stability of cytochrome c oxidase from Paracoccus denitrificans. Biochemistry. 1994 Aug 16;33(32):9731–9740. doi: 10.1021/bi00198a044. [DOI] [PubMed] [Google Scholar]
  18. Juul B., Turc H., Durand M. L., Gomez de Gracia A., Denoroy L., Møller J. V., Champeil P., le Maire M. Do transmembrane segments in proteolyzed sarcoplasmic reticulum Ca(2+)-ATPase retain their functional Ca2+ binding properties after removal of cytoplasmic fragments by proteinase K? J Biol Chem. 1995 Aug 25;270(34):20123–20134. doi: 10.1074/jbc.270.34.20123. [DOI] [PubMed] [Google Scholar]
  19. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  20. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  21. Lepock J. R., Rodahl A. M., Zhang C., Heynen M. L., Waters B., Cheng K. H. Thermal denaturation of the Ca2(+)-ATPase of sarcoplasmic reticulum reveals two thermodynamically independent domains. Biochemistry. 1990 Jan 23;29(3):681–689. doi: 10.1021/bi00455a013. [DOI] [PubMed] [Google Scholar]
  22. MacLennan D. H., Brandl C. J., Korczak B., Green N. M. Amino-acid sequence of a Ca2+ + Mg2+-dependent ATPase from rabbit muscle sarcoplasmic reticulum, deduced from its complementary DNA sequence. Nature. 1985 Aug 22;316(6030):696–700. doi: 10.1038/316696a0. [DOI] [PubMed] [Google Scholar]
  23. Martínez A., Haavik J., Flatmark T., Arrondo J. L., Muga A. Conformational properties and stability of tyrosine hydroxylase studied by infrared spectroscopy. Effect of iron/catecholamine binding and phosphorylation. J Biol Chem. 1996 Aug 16;271(33):19737–19742. doi: 10.1074/jbc.271.33.19737. [DOI] [PubMed] [Google Scholar]
  24. Meissner G., Conner G. E., Fleischer S. Isolation of sarcoplasmic reticulum by zonal centrifugation and purification of Ca 2+ -pump and Ca 2+ -binding proteins. Biochim Biophys Acta. 1973 Mar 16;298(2):246–269. doi: 10.1016/0005-2736(73)90355-6. [DOI] [PubMed] [Google Scholar]
  25. Merino J. M., Moller J. V., Gutiérrez-Merino C. Thermal unfolding of monomeric Ca(II), Mg(II)-ATPase from sarcoplasmic reticulum of rabbit skeletal muscle. FEBS Lett. 1994 Apr 25;343(2):155–159. doi: 10.1016/0014-5793(94)80309-9. [DOI] [PubMed] [Google Scholar]
  26. Nakamura H., Jilka R. L., Boland R., Martonosi A. N. Mechanism of ATP hydrolysis by sarcoplasmic reticulum and the role of phospholipids. J Biol Chem. 1976 Sep 10;251(17):5414–5423. [PubMed] [Google Scholar]
  27. Prado A., Arrondo J. L., Villena A., Goñi F. M., Macarulla J. M. Membrane-surfactant interactions. The effect of Triton X-100 on sarcoplasmic reticulum vesicles. Biochim Biophys Acta. 1983 Aug 24;733(1):163–171. doi: 10.1016/0005-2736(83)90102-5. [DOI] [PubMed] [Google Scholar]
  28. Reisdorf W. C., Jr, Krimm S. Infrared amide I' band of the coiled coil. Biochemistry. 1996 Feb 6;35(5):1383–1386. doi: 10.1021/bi951589v. [DOI] [PubMed] [Google Scholar]
  29. Stewart P. S., MacLennan D. H. Isolation and characterization of tryptic fragments of the adenosine triphosphatase of sarcoplasmic reticulum. J Biol Chem. 1976 Feb 10;251(3):712–719. [PubMed] [Google Scholar]
  30. Stokes D. L., Taylor W. R., Green N. M. Structure, transmembrane topology and helix packing of P-type ion pumps. FEBS Lett. 1994 Jun 6;346(1):32–38. doi: 10.1016/0014-5793(94)00297-5. [DOI] [PubMed] [Google Scholar]
  31. Toyoshima C., Sasabe H., Stokes D. L. Three-dimensional cryo-electron microscopy of the calcium ion pump in the sarcoplasmic reticulum membrane. Nature. 1993 Apr 1;362(6419):467–471. doi: 10.1038/362469a0. [DOI] [PubMed] [Google Scholar]
  32. Vigneron L., Ruysschaert J. M., Goormaghtigh E. Fourier transform infrared spectroscopy study of the secondary structure of the reconstituted Neurospora crassa plasma membrane H(+)-ATPase and of its membrane-associated proteolytic peptides. J Biol Chem. 1995 Jul 28;270(30):17685–17696. doi: 10.1074/jbc.270.30.17685. [DOI] [PubMed] [Google Scholar]
  33. Yang P. W., Mantsch H. H., Arrondo J. L., Saint-Girons I., Guillou Y., Cohen G. N., Bârzu O. Fourier transform infrared investigation of the Escherichia coli methionine aporepressor. Biochemistry. 1987 May 19;26(10):2706–2711. doi: 10.1021/bi00384a009. [DOI] [PubMed] [Google Scholar]
  34. de Jongh H. H., Goormaghtigh E., Ruysschaert J. M. The different molar absorptivities of the secondary structure types in the amide I region: an attenuated total reflection infrared study on globular proteins. Anal Biochem. 1996 Nov 1;242(1):95–103. doi: 10.1006/abio.1996.0434. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES