Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1998 May;7(5):1214–1220. doi: 10.1002/pro.5560070517

Synthesis, physicochemical characterization, and crystallization of a putative retro-coiled coil.

N Liu 1, C Deillon 1, S Klauser 1, B Gutte 1, R M Thomas 1
PMCID: PMC2144018  PMID: 9605327

Abstract

An artificial HIV enhancer-binding polypeptide has recently been dimerized by covalently linking it to the leucine zipper motif of the yeast transcriptional activator GCN4 (Liu N et al., 1997, Eur Biophys J 25:399-403). Although it seemed that the dimerization of this peptide could be best achieved by the use of the retro sequence of the leucine zipper, this approach was not implemented in the original construct. As the first step toward the synthesis of a basic region-retro leucine zipper HIV enhancer-binding fusion protein, we have now prepared the retro version of the leucine zipper (r-LZ35) and performed initial physicochemical characterization. Circular dichroism and sedimentation equilibrium studies showed that, at concentrations < 100 microM, the retro peptide was an unstructured monomer. At higher concentrations, however, the monomer was in equilibrium with a tetramer and, at 1 mM, the retro peptide was almost fully helical. N-terminal extension of the retro peptide by the tripeptide Cys-Gly-Gly resulted in a 38-residue polypeptide that could be covalently dimerized by forming a disulfide bond between two chains to give the peptide (r-LZ38)2. Even in the low micromolar concentration range peptide (r-LZ38)2 formed a stable, noncovalent, helical dimer as revealed by circular dichroism and sedimentation equilibrium in the presence and absence of guanidinium chloride. (r-LZ38)2 has been crystallized and X-ray structural analysis is under way. The disulfide-crosslinked retro-leucine zipper may lend itself to interesting protein structural studies, including protein design. The present work also highlights the structural and functional potential of retro proteins in general.

Full Text

The Full Text of this article is available as a PDF (705.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aggarwal A. K., Rodgers D. W., Drottar M., Ptashne M., Harrison S. C. Recognition of a DNA operator by the repressor of phage 434: a view at high resolution. Science. 1988 Nov 11;242(4880):899–907. doi: 10.1126/science.3187531. [DOI] [PubMed] [Google Scholar]
  2. Anderson J. E., Ptashne M., Harrison S. C. Structure of the repressor-operator complex of bacteriophage 434. 1987 Apr 30-May 6Nature. 326(6116):846–852. doi: 10.1038/326846a0. [DOI] [PubMed] [Google Scholar]
  3. Chen Y. H., Yang J. T., Martinez H. M. Determination of the secondary structures of proteins by circular dichroism and optical rotatory dispersion. Biochemistry. 1972 Oct 24;11(22):4120–4131. doi: 10.1021/bi00772a015. [DOI] [PubMed] [Google Scholar]
  4. Chorev M., Goodman M. Recent developments in retro peptides and proteins--an ongoing topochemical exploration. Trends Biotechnol. 1995 Oct;13(10):438–445. doi: 10.1016/S0167-7799(00)88999-4. [DOI] [PubMed] [Google Scholar]
  5. Curry V. A., Clark I. M., Bigg H., Cawston T. E. Large inhibitor of metalloproteinases (LIMP) contains tissue inhibitor of metalloproteinases (TIMP)-2 bound to 72,000-M(r) progelatinase. Biochem J. 1992 Jul 1;285(Pt 1):143–147. doi: 10.1042/bj2850143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gonzalez L., Jr, Brown R. A., Richardson D., Alber T. Crystal structures of a single coiled-coil peptide in two oligomeric states reveal the basis for structural polymorphism. Nat Struct Biol. 1996 Dec;3(12):1002–1009. doi: 10.1038/nsb1296-1002. [DOI] [PubMed] [Google Scholar]
  7. Gonzalez L., Jr, Woolfson D. N., Alber T. Buried polar residues and structural specificity in the GCN4 leucine zipper. Nat Struct Biol. 1996 Dec;3(12):1011–1018. doi: 10.1038/nsb1296-1011. [DOI] [PubMed] [Google Scholar]
  8. Guptasarma P. Reversal of peptide backbone direction may result in the mirroring of protein structure. FEBS Lett. 1992 Oct 5;310(3):205–210. doi: 10.1016/0014-5793(92)81333-h. [DOI] [PubMed] [Google Scholar]
  9. Gutte B., Schindler S., Standar F., Wittschieber E. Interaction of synthetic NH2-terminal fragments of bacteriophage lambda cro protein with nucleic acids. Biochem Biophys Res Commun. 1980 Aug 14;95(3):1071–1079. doi: 10.1016/0006-291x(80)91582-x. [DOI] [PubMed] [Google Scholar]
  10. Harbury P. B., Zhang T., Kim P. S., Alber T. A switch between two-, three-, and four-stranded coiled coils in GCN4 leucine zipper mutants. Science. 1993 Nov 26;262(5138):1401–1407. doi: 10.1126/science.8248779. [DOI] [PubMed] [Google Scholar]
  11. Hodges R. S., Saund A. K., Chong P. C., St-Pierre S. A., Reid R. E. Synthetic model for two-stranded alpha-helical coiled-coils. Design, synthesis, and characterization of an 86-residue analog of tropomyosin. J Biol Chem. 1981 Feb 10;256(3):1214–1224. [PubMed] [Google Scholar]
  12. Krylov D., Mikhailenko I., Vinson C. A thermodynamic scale for leucine zipper stability and dimerization specificity: e and g interhelical interactions. EMBO J. 1994 Jun 15;13(12):2849–2861. doi: 10.1002/j.1460-2075.1994.tb06579.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Landschulz W. H., Johnson P. F., McKnight S. L. The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science. 1988 Jun 24;240(4860):1759–1764. doi: 10.1126/science.3289117. [DOI] [PubMed] [Google Scholar]
  14. Liu N., Caderas G., Gutte B., Thomas R. M. An artificial HIV enhancer-binding peptide is dimerized by the addition of a leucine zipper. Eur Biophys J. 1997;25(5-6):399–403. doi: 10.1007/s002490050052. [DOI] [PubMed] [Google Scholar]
  15. Lovejoy B., Choe S., Cascio D., McRorie D. K., DeGrado W. F., Eisenberg D. Crystal structure of a synthetic triple-stranded alpha-helical bundle. Science. 1993 Feb 26;259(5099):1288–1293. doi: 10.1126/science.8446897. [DOI] [PubMed] [Google Scholar]
  16. Lumb K. J., Carr C. M., Kim P. S. Subdomain folding of the coiled coil leucine zipper from the bZIP transcriptional activator GCN4. Biochemistry. 1994 Jun 14;33(23):7361–7367. doi: 10.1021/bi00189a042. [DOI] [PubMed] [Google Scholar]
  17. O'Shea E. K., Rutkowski R., Kim P. S. Evidence that the leucine zipper is a coiled coil. Science. 1989 Jan 27;243(4890):538–542. doi: 10.1126/science.2911757. [DOI] [PubMed] [Google Scholar]
  18. Pace C. N. The stability of globular proteins. CRC Crit Rev Biochem. 1975 May;3(1):1–43. doi: 10.3109/10409237509102551. [DOI] [PubMed] [Google Scholar]
  19. Potekhin S. A., Medvedkin V. N., Kashparov I. A., Venyaminov SYu Synthesis and properties of the peptide corresponding to the mutant form of the leucine zipper of the transcriptional activator GCN4 from yeast. Protein Eng. 1994 Sep;7(9):1097–1101. doi: 10.1093/protein/7.9.1097. [DOI] [PubMed] [Google Scholar]
  20. Ransone L. J., Verma I. M. Nuclear proto-oncogenes fos and jun. Annu Rev Cell Biol. 1990;6:539–557. doi: 10.1146/annurev.cb.06.110190.002543. [DOI] [PubMed] [Google Scholar]
  21. Rasmussen R., Benvegnu D., O'Shea E. K., Kim P. S., Alber T. X-ray scattering indicates that the leucine zipper is a coiled coil. Proc Natl Acad Sci U S A. 1991 Jan 15;88(2):561–564. doi: 10.1073/pnas.88.2.561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Riley L. G., Ralston G. B., Weiss A. S. Multimer formation as a consequence of separate homodimerization domains: the human c-Jun leucine zipper is a transplantable dimerization module. Protein Eng. 1996 Feb;9(2):223–230. doi: 10.1093/protein/9.2.223. [DOI] [PubMed] [Google Scholar]
  23. Städler K., Liu N., Trotman L., Hiltpold A., Caderas G., Klauser S., Hehlgans T., Gutte B. Design, synthesis, and characterization of HIV-1 enhancer-binding polypeptides derived from bacteriophage 434 repressor. Int J Pept Protein Res. 1995 Sep-Oct;46(3-4):333–340. doi: 10.1111/j.1399-3011.1995.tb00606.x. [DOI] [PubMed] [Google Scholar]
  24. Zeng X., Zhu H., Lashuel H. A., Hu J. C. Oligomerization properties of GCN4 leucine zipper e and g position mutants. Protein Sci. 1997 Oct;6(10):2218–2226. doi: 10.1002/pro.5560061016. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES