Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1998 Jun;7(6):1352–1358. doi: 10.1002/pro.5560070611

Thermodynamic characterization of an intermediate state of human growth hormone.

I Gomez-Orellana 1, B Variano 1, J Miura-Fraboni 1, S Milstein 1, D R Paton 1
PMCID: PMC2144027  PMID: 9655339

Abstract

The thermal denaturation of recombinant human growth hormone (rhGH) was studied by differential scanning calorimetry and circular dichroism spectroscopy (CD). The thermal unfolding is reversible only below pH 3.5, and under these conditions a single two-state transition was observed between 0 and 100 degrees C. The magnitudes of the deltaH and deltaCp of this transition indicate that it corresponds to a partial unfolding of rhGH. This is also supported by CD data, which show that significant secondary structure remains after the unfolding. Above pH 3.5 the thermal denaturation is irreversible due to the aggregation of rhGH upon unfolding. This aggregation is prevented in aqueous solutions of alcohols such as n-propanol, 2-propanol, or 1,2-propanediol (propylene glycol), which suggests that the self-association of rhGH is caused by hydrophobic interactions. In addition, it was found that the native state of rhGH is stable in relatively high concentrations of propylene glycol (up to 45% v/v at pH 7-8 or 30% at pH 3) and that under these conditions the thermal unfolding is cooperative and corresponds to a transition from the native state to a partially folded state, as observed at acidic pH in the absence of alcohols. In higher concentrations of propylene glycol, the tertiary structure of rhGH is disrupted and the cooperativity of the unfolding decreases. Moreover, the CD and DSC data indicate that a partially folded intermediate with essentially native secondary structure and disordered tertiary structure becomes significantly populated in 70-80% propylene glycol.

Full Text

The Full Text of this article is available as a PDF (662.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abildgaard F., Jørgensen A. M., Led J. J., Christensen T., Jensen E. B., Junker F., Dalbøge H. Characterization of tertiary interactions in a folded protein by NMR methods: studies of pH-induced structural changes in human growth hormone. Biochemistry. 1992 Sep 15;31(36):8587–8596. doi: 10.1021/bi00151a028. [DOI] [PubMed] [Google Scholar]
  2. Balbach J., Forge V., van Nuland N. A., Winder S. L., Hore P. J., Dobson C. M. Following protein folding in real time using NMR spectroscopy. Nat Struct Biol. 1995 Oct;2(10):865–870. doi: 10.1038/nsb1095-865. [DOI] [PubMed] [Google Scholar]
  3. Bam N. B., Cleland J. L., Randolph T. W. Molten globule intermediate of recombinant human growth hormone: stabilization with surfactants. Biotechnol Prog. 1996 Nov-Dec;12(6):801–809. doi: 10.1021/bp960068b. [DOI] [PubMed] [Google Scholar]
  4. Bastiras S., Wallace J. C. Equilibrium denaturation of recombinant porcine growth hormone. Biochemistry. 1992 Sep 29;31(38):9304–9309. doi: 10.1021/bi00153a025. [DOI] [PubMed] [Google Scholar]
  5. Bewley T. A. Circular dichroism of pituitary hormones. Recent Prog Horm Res. 1979;35:155–213. [PubMed] [Google Scholar]
  6. Brems D. N., Brown P. L., Becker G. W. Equilibrium denaturation of human growth hormone and its cysteine-modified forms. J Biol Chem. 1990 Apr 5;265(10):5504–5511. [PubMed] [Google Scholar]
  7. Buck M., Schwalbe H., Dobson C. M. Characterization of conformational preferences in a partly folded protein by heteronuclear NMR spectroscopy: assignment and secondary structure analysis of hen egg-white lysozyme in trifluoroethanol. Biochemistry. 1995 Oct 10;34(40):13219–13232. doi: 10.1021/bi00040a038. [DOI] [PubMed] [Google Scholar]
  8. Bychkova V. E., Dujsekina A. E., Klenin S. I., Tiktopulo E. I., Uversky V. N., Ptitsyn O. B. Molten globule-like state of cytochrome c under conditions simulating those near the membrane surface. Biochemistry. 1996 May 14;35(19):6058–6063. doi: 10.1021/bi9522460. [DOI] [PubMed] [Google Scholar]
  9. Chamberlain A. K., Handel T. M., Marqusee S. Detection of rare partially folded molecules in equilibrium with the native conformation of RNaseH. Nat Struct Biol. 1996 Sep;3(9):782–787. doi: 10.1038/nsb0996-782. [DOI] [PubMed] [Google Scholar]
  10. DeFelippis M. R., Alter L. A., Pekar A. H., Havel H. A., Brems D. N. Evidence for a self-associating equilibrium intermediate during folding of human growth hormone. Biochemistry. 1993 Feb 16;32(6):1555–1562. doi: 10.1021/bi00057a021. [DOI] [PubMed] [Google Scholar]
  11. DeFelippis M. R., Kilcomons M. A., Lents M. P., Youngman K. M., Havel H. A. Acid stabilization of human growth hormone equilibrium folding intermediates. Biochim Biophys Acta. 1995 Feb 22;1247(1):35–45. doi: 10.1016/0167-4838(94)00199-q. [DOI] [PubMed] [Google Scholar]
  12. Dib R., Chobert J. M., Dalgalarrondo M., Haertlé T. Secondary structure changes and peptic hydrolysis of beta-lactoglobulin induced by diols. Biopolymers. 1996 Jul;39(1):23–30. doi: 10.1002/(SICI)1097-0282(199607)39:1%3C23::AID-BIP3%3E3.0.CO;2-X. [DOI] [PubMed] [Google Scholar]
  13. Freire E. Statistical thermodynamic analysis of differential scanning calorimetry data: structural deconvolution of heat capacity function of proteins. Methods Enzymol. 1994;240:502–530. doi: 10.1016/s0076-6879(94)40062-8. [DOI] [PubMed] [Google Scholar]
  14. Fu L., Freire E. On the origin of the enthalpy and entropy convergence temperatures in protein folding. Proc Natl Acad Sci U S A. 1992 Oct 1;89(19):9335–9338. doi: 10.1073/pnas.89.19.9335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Goeddel D. V., Heyneker H. L., Hozumi T., Arentzen R., Itakura K., Yansura D. G., Ross M. J., Miozzari G., Crea R., Seeburg P. H. Direct expression in Escherichia coli of a DNA sequence coding for human growth hormone. Nature. 1979 Oct 18;281(5732):544–548. doi: 10.1038/281544a0. [DOI] [PubMed] [Google Scholar]
  16. Griko Y. V., Freire E., Privalov P. L. Energetics of the alpha-lactalbumin states: a calorimetric and statistical thermodynamic study. Biochemistry. 1994 Feb 22;33(7):1889–1899. doi: 10.1021/bi00173a036. [DOI] [PubMed] [Google Scholar]
  17. Gómez J., Hilser V. J., Xie D., Freire E. The heat capacity of proteins. Proteins. 1995 Aug;22(4):404–412. doi: 10.1002/prot.340220410. [DOI] [PubMed] [Google Scholar]
  18. Hamada D., Segawa S., Goto Y. Non-native alpha-helical intermediate in the refolding of beta-lactoglobulin, a predominantly beta-sheet protein. Nat Struct Biol. 1996 Oct;3(10):868–873. doi: 10.1038/nsb1096-868. [DOI] [PubMed] [Google Scholar]
  19. Havel H. A., Kauffman E. W., Plaisted S. M., Brems D. N. Reversible self-association of bovine growth hormone during equilibrium unfolding. Biochemistry. 1986 Oct 21;25(21):6533–6538. doi: 10.1021/bi00369a029. [DOI] [PubMed] [Google Scholar]
  20. Hirota N., Mizuno K., Goto Y. Cooperative alpha-helix formation of beta-lactoglobulin and melittin induced by hexafluoroisopropanol. Protein Sci. 1997 Feb;6(2):416–421. doi: 10.1002/pro.5560060218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Jeng M. F., Englander S. W. Stable submolecular folding units in a non-compact form of cytochrome c. J Mol Biol. 1991 Oct 5;221(3):1045–1061. doi: 10.1016/0022-2836(91)80191-v. [DOI] [PubMed] [Google Scholar]
  22. Jennings P. A., Wright P. E. Formation of a molten globule intermediate early in the kinetic folding pathway of apomyoglobin. Science. 1993 Nov 5;262(5135):892–896. doi: 10.1126/science.8235610. [DOI] [PubMed] [Google Scholar]
  23. Kamatari Y. O., Konno T., Kataoka M., Akasaka K. The methanol-induced globular and expanded denatured states of cytochrome c: a study by CD fluorescence, NMR and small-angle X-ray scattering. J Mol Biol. 1996 Jun 14;259(3):512–523. doi: 10.1006/jmbi.1996.0336. [DOI] [PubMed] [Google Scholar]
  24. Kuroda Y., Kidokoro S., Wada A. Thermodynamic characterization of cytochrome c at low pH. Observation of the molten globule state and of the cold denaturation process. J Mol Biol. 1992 Feb 20;223(4):1139–1153. doi: 10.1016/0022-2836(92)90265-l. [DOI] [PubMed] [Google Scholar]
  25. Lee B., Richards F. M. The interpretation of protein structures: estimation of static accessibility. J Mol Biol. 1971 Feb 14;55(3):379–400. doi: 10.1016/0022-2836(71)90324-x. [DOI] [PubMed] [Google Scholar]
  26. Liu Y., Bolen D. W. The peptide backbone plays a dominant role in protein stabilization by naturally occurring osmolytes. Biochemistry. 1995 Oct 3;34(39):12884–12891. doi: 10.1021/bi00039a051. [DOI] [PubMed] [Google Scholar]
  27. Murphy K. P., Freire E. Thermodynamics of structural stability and cooperative folding behavior in proteins. Adv Protein Chem. 1992;43:313–361. doi: 10.1016/s0065-3233(08)60556-2. [DOI] [PubMed] [Google Scholar]
  28. Schönbrunner N., Wey J., Engels J., Georg H., Kiefhaber T. Native-like beta-structure in a trifluoroethanol-induced partially folded state of the all-beta-sheet protein tendamistat. J Mol Biol. 1996 Jul 19;260(3):432–445. doi: 10.1006/jmbi.1996.0412. [DOI] [PubMed] [Google Scholar]
  29. Uversky V. N., Narizhneva N. V., Kirschstein S. O., Winter S., Löber G. Conformational transitions provoked by organic solvents in beta-lactoglobulin: can a molten globule like intermediate be induced by the decrease in dielectric constant? Fold Des. 1997;2(3):163–172. doi: 10.1016/s1359-0278(97)00023-0. [DOI] [PubMed] [Google Scholar]
  30. Velicelebi G., Sturtevant J. M. Thermodynamics of the denaturation of lysozyme in alcohol--water mixtures. Biochemistry. 1979 Apr 3;18(7):1180–1186. doi: 10.1021/bi00574a010. [DOI] [PubMed] [Google Scholar]
  31. Wicar S., Mulkerrin M. G., Bathory G., Khundkar L. H., Karger B. L. Conformational changes in the reversed phase liquid chromatography of recombinant human growth hormone as a function of organic solvent: the molten globule state. Anal Chem. 1994 Nov 15;66(22):3908–3915. doi: 10.1021/ac00094a011. [DOI] [PubMed] [Google Scholar]
  32. Xie D., Fox R., Freire E. Thermodynamic characterization of an equilibrium folding intermediate of staphylococcal nuclease. Protein Sci. 1994 Dec;3(12):2175–2184. doi: 10.1002/pro.5560031203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Xie D., Freire E. Molecular basis of cooperativity in protein folding. V. Thermodynamic and structural conditions for the stabilization of compact denatured states. Proteins. 1994 Aug;19(4):291–301. doi: 10.1002/prot.340190404. [DOI] [PubMed] [Google Scholar]
  34. Youngman K. M., Spencer D. B., Brems D. N., DeFelippis M. R. Kinetic analysis of the folding of human growth hormone. Influence of disulfide bonds. J Biol Chem. 1995 Aug 25;270(34):19816–19822. doi: 10.1074/jbc.270.34.19816. [DOI] [PubMed] [Google Scholar]
  35. de Vos A. M., Ultsch M., Kossiakoff A. A. Human growth hormone and extracellular domain of its receptor: crystal structure of the complex. Science. 1992 Jan 17;255(5042):306–312. doi: 10.1126/science.1549776. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES