Abstract
Intestinal fatty acid-binding protein (I-FABP) is a cytosolic 15.1-kDa protein that appears to function in the intracellular transport and metabolic trafficking of fatty acids. It binds a single molecule of long-chain fatty acid in an enclosed cavity surrounded by two five-stranded antiparallel beta-sheets and a helix-turn-helix domain. To investigate the role of the helical domain, we engineered a variant of I-FABP by deleting 17 contiguous residues and inserting a Ser-Gly linker (Kim K et al., 1996, Biochemistry 35:7553-7558). This variant, termed delta17-SG, was remarkably stable, exhibited a high beta-sheet content and was able to bind fatty acids with some features characteristic of the wild-type protein. In the present study, we determined the structure of the delta17-SG/palmitate complex at atomic resolution using triple-resonance 3D NMR methods. Sequence-specific 1H, 13C, and 15N resonance assignments were established at pH 7.2 and 25 degrees C and used to define the consensus 1H/13C chemical shift-derived secondary structure. Subsequently, an iterative protocol was used to identify 2,544 NOE-derived interproton distance restraints and to calculate its tertiary structure using a unique distance geometry/simulated annealing algorithm. In spite of the sizable deletion, the delta17-SG structure exhibits a backbone conformation that is nearly superimposable with the beta-sheet domain of the wild-type protein. The selective deletion of the alpha-helical domain creates a very large opening that connects the interior ligand-binding cavity with exterior solvent. Unlike wild-type I-FABP, fatty acid dissociation from delta17-SG is structurally and kinetically unimpeded, and a protein conformational transition is not required. The delta17-SG variant of I-FABP is the only wild-type or engineered member of the intracellular lipid-binding protein family whose structure lacks alpha-helices. Thus, delta17-SG I-FABP constitutes a unique model system for investigating the role of the helical domain in ligand-protein recognition, protein stability and folding, lipid transfer mechanisms, and cellular function.
Full Text
The Full Text of this article is available as a PDF (5.5 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Cistola D. P., Kim K., Rogl H., Frieden C. Fatty acid interactions with a helix-less variant of intestinal fatty acid-binding protein. Biochemistry. 1996 Jun 11;35(23):7559–7565. doi: 10.1021/bi952912x. [DOI] [PubMed] [Google Scholar]
- Cistola D. P., Sacchettini J. C., Banaszak L. J., Walsh M. T., Gordon J. I. Fatty acid interactions with rat intestinal and liver fatty acid-binding proteins expressed in Escherichia coli. A comparative 13C NMR study. J Biol Chem. 1989 Feb 15;264(5):2700–2710. [PubMed] [Google Scholar]
- Glatz J. F., van der Vusse G. J. Cellular fatty acid-binding proteins: their function and physiological significance. Prog Lipid Res. 1996 Sep;35(3):243–282. doi: 10.1016/s0163-7827(96)00006-9. [DOI] [PubMed] [Google Scholar]
- Grzesiek S., Bax A. Amino acid type determination in the sequential assignment procedure of uniformly 13C/15N-enriched proteins. J Biomol NMR. 1993 Mar;3(2):185–204. doi: 10.1007/BF00178261. [DOI] [PubMed] [Google Scholar]
- Herr F. M., Aronson J., Storch J. Role of portal region lysine residues in electrostatic interactions between heart fatty acid binding protein and phospholipid membranes. Biochemistry. 1996 Jan 30;35(4):1296–1303. doi: 10.1021/bi952204b. [DOI] [PubMed] [Google Scholar]
- Hodsdon M. E., Cistola D. P. Discrete backbone disorder in the nuclear magnetic resonance structure of apo intestinal fatty acid-binding protein: implications for the mechanism of ligand entry. Biochemistry. 1997 Feb 11;36(6):1450–1460. doi: 10.1021/bi961890r. [DOI] [PubMed] [Google Scholar]
- Hodsdon M. E., Cistola D. P. Ligand binding alters the backbone mobility of intestinal fatty acid-binding protein as monitored by 15N NMR relaxation and 1H exchange. Biochemistry. 1997 Feb 25;36(8):2278–2290. doi: 10.1021/bi962018l. [DOI] [PubMed] [Google Scholar]
- Hodsdon M. E., Ponder J. W., Cistola D. P. The NMR solution structure of intestinal fatty acid-binding protein complexed with palmitate: application of a novel distance geometry algorithm. J Mol Biol. 1996 Dec 6;264(3):585–602. doi: 10.1006/jmbi.1996.0663. [DOI] [PubMed] [Google Scholar]
- Hodsdon M. E., Toner J. J., Cistola D. P. 1H, 13C and 15N assignments and chemical shift-derived secondary structure of intestinal fatty acid-binding protein. J Biomol NMR. 1995 Sep;6(2):198–210. doi: 10.1007/BF00211784. [DOI] [PubMed] [Google Scholar]
- Hsu K. T., Storch J. Fatty acid transfer from liver and intestinal fatty acid-binding proteins to membranes occurs by different mechanisms. J Biol Chem. 1996 Jun 7;271(23):13317–13323. doi: 10.1074/jbc.271.23.13317. [DOI] [PubMed] [Google Scholar]
- Kim K., Cistola D. P., Frieden C. Intestinal fatty acid-binding protein: the structure and stability of a helix-less variant. Biochemistry. 1996 Jun 11;35(23):7553–7558. doi: 10.1021/bi9529115. [DOI] [PubMed] [Google Scholar]
- Koradi R., Billeter M., Wüthrich K. MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph. 1996 Feb;14(1):51-5, 29-32. doi: 10.1016/0263-7855(96)00009-4. [DOI] [PubMed] [Google Scholar]
- Laskowski R. A., Rullmannn J. A., MacArthur M. W., Kaptein R., Thornton J. M. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR. 1996 Dec;8(4):477–486. doi: 10.1007/BF00228148. [DOI] [PubMed] [Google Scholar]
- Lee B., Richards F. M. The interpretation of protein structures: estimation of static accessibility. J Mol Biol. 1971 Feb 14;55(3):379–400. doi: 10.1016/0022-2836(71)90324-x. [DOI] [PubMed] [Google Scholar]
- Sacchettini J. C., Gordon J. I., Banaszak L. J. Refined apoprotein structure of rat intestinal fatty acid binding protein produced in Escherichia coli. Proc Natl Acad Sci U S A. 1989 Oct;86(20):7736–7740. doi: 10.1073/pnas.86.20.7736. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sacchettini J. C., Gordon J. I. Rat intestinal fatty acid binding protein. A model system for analyzing the forces that can bind fatty acids to proteins. J Biol Chem. 1993 Sep 5;268(25):18399–18402. [PubMed] [Google Scholar]
- Veerkamp J. H., Maatman R. G. Cytoplasmic fatty acid-binding proteins: their structure and genes. Prog Lipid Res. 1995;34(1):17–52. doi: 10.1016/0163-7827(94)00005-7. [DOI] [PubMed] [Google Scholar]
- Wishart D. S., Sykes B. D., Richards F. M. The chemical shift index: a fast and simple method for the assignment of protein secondary structure through NMR spectroscopy. Biochemistry. 1992 Feb 18;31(6):1647–1651. doi: 10.1021/bi00121a010. [DOI] [PubMed] [Google Scholar]
- Wishart D. S., Sykes B. D. The 13C chemical-shift index: a simple method for the identification of protein secondary structure using 13C chemical-shift data. J Biomol NMR. 1994 Mar;4(2):171–180. doi: 10.1007/BF00175245. [DOI] [PubMed] [Google Scholar]