Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1998 Jun;7(6):1332–1339. doi: 10.1002/pro.5560070609

The three-dimensional structure of a helix-less variant of intestinal fatty acid-binding protein.

R A Steele 1, D A Emmert 1, J Kao 1, M E Hodsdon 1, C Frieden 1, D P Cistola 1
PMCID: PMC2144039  PMID: 9655337

Abstract

Intestinal fatty acid-binding protein (I-FABP) is a cytosolic 15.1-kDa protein that appears to function in the intracellular transport and metabolic trafficking of fatty acids. It binds a single molecule of long-chain fatty acid in an enclosed cavity surrounded by two five-stranded antiparallel beta-sheets and a helix-turn-helix domain. To investigate the role of the helical domain, we engineered a variant of I-FABP by deleting 17 contiguous residues and inserting a Ser-Gly linker (Kim K et al., 1996, Biochemistry 35:7553-7558). This variant, termed delta17-SG, was remarkably stable, exhibited a high beta-sheet content and was able to bind fatty acids with some features characteristic of the wild-type protein. In the present study, we determined the structure of the delta17-SG/palmitate complex at atomic resolution using triple-resonance 3D NMR methods. Sequence-specific 1H, 13C, and 15N resonance assignments were established at pH 7.2 and 25 degrees C and used to define the consensus 1H/13C chemical shift-derived secondary structure. Subsequently, an iterative protocol was used to identify 2,544 NOE-derived interproton distance restraints and to calculate its tertiary structure using a unique distance geometry/simulated annealing algorithm. In spite of the sizable deletion, the delta17-SG structure exhibits a backbone conformation that is nearly superimposable with the beta-sheet domain of the wild-type protein. The selective deletion of the alpha-helical domain creates a very large opening that connects the interior ligand-binding cavity with exterior solvent. Unlike wild-type I-FABP, fatty acid dissociation from delta17-SG is structurally and kinetically unimpeded, and a protein conformational transition is not required. The delta17-SG variant of I-FABP is the only wild-type or engineered member of the intracellular lipid-binding protein family whose structure lacks alpha-helices. Thus, delta17-SG I-FABP constitutes a unique model system for investigating the role of the helical domain in ligand-protein recognition, protein stability and folding, lipid transfer mechanisms, and cellular function.

Full Text

The Full Text of this article is available as a PDF (5.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cistola D. P., Kim K., Rogl H., Frieden C. Fatty acid interactions with a helix-less variant of intestinal fatty acid-binding protein. Biochemistry. 1996 Jun 11;35(23):7559–7565. doi: 10.1021/bi952912x. [DOI] [PubMed] [Google Scholar]
  2. Cistola D. P., Sacchettini J. C., Banaszak L. J., Walsh M. T., Gordon J. I. Fatty acid interactions with rat intestinal and liver fatty acid-binding proteins expressed in Escherichia coli. A comparative 13C NMR study. J Biol Chem. 1989 Feb 15;264(5):2700–2710. [PubMed] [Google Scholar]
  3. Glatz J. F., van der Vusse G. J. Cellular fatty acid-binding proteins: their function and physiological significance. Prog Lipid Res. 1996 Sep;35(3):243–282. doi: 10.1016/s0163-7827(96)00006-9. [DOI] [PubMed] [Google Scholar]
  4. Grzesiek S., Bax A. Amino acid type determination in the sequential assignment procedure of uniformly 13C/15N-enriched proteins. J Biomol NMR. 1993 Mar;3(2):185–204. doi: 10.1007/BF00178261. [DOI] [PubMed] [Google Scholar]
  5. Herr F. M., Aronson J., Storch J. Role of portal region lysine residues in electrostatic interactions between heart fatty acid binding protein and phospholipid membranes. Biochemistry. 1996 Jan 30;35(4):1296–1303. doi: 10.1021/bi952204b. [DOI] [PubMed] [Google Scholar]
  6. Hodsdon M. E., Cistola D. P. Discrete backbone disorder in the nuclear magnetic resonance structure of apo intestinal fatty acid-binding protein: implications for the mechanism of ligand entry. Biochemistry. 1997 Feb 11;36(6):1450–1460. doi: 10.1021/bi961890r. [DOI] [PubMed] [Google Scholar]
  7. Hodsdon M. E., Cistola D. P. Ligand binding alters the backbone mobility of intestinal fatty acid-binding protein as monitored by 15N NMR relaxation and 1H exchange. Biochemistry. 1997 Feb 25;36(8):2278–2290. doi: 10.1021/bi962018l. [DOI] [PubMed] [Google Scholar]
  8. Hodsdon M. E., Ponder J. W., Cistola D. P. The NMR solution structure of intestinal fatty acid-binding protein complexed with palmitate: application of a novel distance geometry algorithm. J Mol Biol. 1996 Dec 6;264(3):585–602. doi: 10.1006/jmbi.1996.0663. [DOI] [PubMed] [Google Scholar]
  9. Hodsdon M. E., Toner J. J., Cistola D. P. 1H, 13C and 15N assignments and chemical shift-derived secondary structure of intestinal fatty acid-binding protein. J Biomol NMR. 1995 Sep;6(2):198–210. doi: 10.1007/BF00211784. [DOI] [PubMed] [Google Scholar]
  10. Hsu K. T., Storch J. Fatty acid transfer from liver and intestinal fatty acid-binding proteins to membranes occurs by different mechanisms. J Biol Chem. 1996 Jun 7;271(23):13317–13323. doi: 10.1074/jbc.271.23.13317. [DOI] [PubMed] [Google Scholar]
  11. Kim K., Cistola D. P., Frieden C. Intestinal fatty acid-binding protein: the structure and stability of a helix-less variant. Biochemistry. 1996 Jun 11;35(23):7553–7558. doi: 10.1021/bi9529115. [DOI] [PubMed] [Google Scholar]
  12. Koradi R., Billeter M., Wüthrich K. MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph. 1996 Feb;14(1):51-5, 29-32. doi: 10.1016/0263-7855(96)00009-4. [DOI] [PubMed] [Google Scholar]
  13. Laskowski R. A., Rullmannn J. A., MacArthur M. W., Kaptein R., Thornton J. M. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR. 1996 Dec;8(4):477–486. doi: 10.1007/BF00228148. [DOI] [PubMed] [Google Scholar]
  14. Lee B., Richards F. M. The interpretation of protein structures: estimation of static accessibility. J Mol Biol. 1971 Feb 14;55(3):379–400. doi: 10.1016/0022-2836(71)90324-x. [DOI] [PubMed] [Google Scholar]
  15. Sacchettini J. C., Gordon J. I., Banaszak L. J. Refined apoprotein structure of rat intestinal fatty acid binding protein produced in Escherichia coli. Proc Natl Acad Sci U S A. 1989 Oct;86(20):7736–7740. doi: 10.1073/pnas.86.20.7736. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Sacchettini J. C., Gordon J. I. Rat intestinal fatty acid binding protein. A model system for analyzing the forces that can bind fatty acids to proteins. J Biol Chem. 1993 Sep 5;268(25):18399–18402. [PubMed] [Google Scholar]
  17. Veerkamp J. H., Maatman R. G. Cytoplasmic fatty acid-binding proteins: their structure and genes. Prog Lipid Res. 1995;34(1):17–52. doi: 10.1016/0163-7827(94)00005-7. [DOI] [PubMed] [Google Scholar]
  18. Wishart D. S., Sykes B. D., Richards F. M. The chemical shift index: a fast and simple method for the assignment of protein secondary structure through NMR spectroscopy. Biochemistry. 1992 Feb 18;31(6):1647–1651. doi: 10.1021/bi00121a010. [DOI] [PubMed] [Google Scholar]
  19. Wishart D. S., Sykes B. D. The 13C chemical-shift index: a simple method for the identification of protein secondary structure using 13C chemical-shift data. J Biomol NMR. 1994 Mar;4(2):171–180. doi: 10.1007/BF00175245. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES