Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1998 Jun;7(6):1359–1367. doi: 10.1002/pro.5560070612

Conformational change in the activation of lipase: an analysis in terms of low-frequency normal modes.

S Jääskeläinen 1, C S Verma 1, R E Hubbard 1, P Linko 1, L S Caves 1
PMCID: PMC2144042  PMID: 9655340

Abstract

The interfacial activation of Rhizomucor miehei lipase (RmL) involves the motion of an alpha-helical region (residues 82-96) which acts as a "lid" over the active site of the enzyme, undergoing a displacement from a "closed" to an "open" conformation upon binding of substrate. Normal mode analyses performed in both low and high dielectric media reveal that low-frequency vibrational modes contribute significantly to the conformational transition between the closed and open conformations. In these modes, the lid displacement is coupled to local motions of active site loops as well as global breathing motions. Atomic fluctuations of the first hinge of the lid (residues 83-84) are substantially larger in the low dielectric medium than in the high dielectric medium. Our results also suggest that electrostatic interactions of Arg86 play an important role in terms of both the intrinsic stability of the lid and its displacement, through enhancement of hinge mobility in a high dielectric medium. Additional calculations demonstrate that the observed patterns of atomic fluctuations are an intrinsic feature of the protein structure and not dependent on the nature of specific energy minima.

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amadei A., Linssen A. B., Berendsen H. J. Essential dynamics of proteins. Proteins. 1993 Dec;17(4):412–425. doi: 10.1002/prot.340170408. [DOI] [PubMed] [Google Scholar]
  2. Brady L., Brzozowski A. M., Derewenda Z. S., Dodson E., Dodson G., Tolley S., Turkenburg J. P., Christiansen L., Huge-Jensen B., Norskov L. A serine protease triad forms the catalytic centre of a triacylglycerol lipase. Nature. 1990 Feb 22;343(6260):767–770. doi: 10.1038/343767a0. [DOI] [PubMed] [Google Scholar]
  3. Brooks B., Karplus M. Normal modes for specific motions of macromolecules: application to the hinge-bending mode of lysozyme. Proc Natl Acad Sci U S A. 1985 Aug;82(15):4995–4999. doi: 10.1073/pnas.82.15.4995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brzozowski A. M., Derewenda U., Derewenda Z. S., Dodson G. G., Lawson D. M., Turkenburg J. P., Bjorkling F., Huge-Jensen B., Patkar S. A., Thim L. A model for interfacial activation in lipases from the structure of a fungal lipase-inhibitor complex. Nature. 1991 Jun 6;351(6326):491–494. doi: 10.1038/351491a0. [DOI] [PubMed] [Google Scholar]
  5. Brünger A. T., Karplus M. Polar hydrogen positions in proteins: empirical energy placement and neutron diffraction comparison. Proteins. 1988;4(2):148–156. doi: 10.1002/prot.340040208. [DOI] [PubMed] [Google Scholar]
  6. Loncharich R. J., Brooks B. R. The effects of truncating long-range forces on protein dynamics. Proteins. 1989;6(1):32–45. doi: 10.1002/prot.340060104. [DOI] [PubMed] [Google Scholar]
  7. Ma J., Karplus M. Ligand-induced conformational changes in ras p21: a normal mode and energy minimization analysis. J Mol Biol. 1997 Nov 21;274(1):114–131. doi: 10.1006/jmbi.1997.1313. [DOI] [PubMed] [Google Scholar]
  8. Marques O., Sanejouand Y. H. Hinge-bending motion in citrate synthase arising from normal mode calculations. Proteins. 1995 Dec;23(4):557–560. doi: 10.1002/prot.340230410. [DOI] [PubMed] [Google Scholar]
  9. Mouawad L., Perahia D. Motions in hemoglobin studied by normal mode analysis and energy minimization: evidence for the existence of tertiary T-like, quaternary R-like intermediate structures. J Mol Biol. 1996 May 3;258(2):393–410. doi: 10.1006/jmbi.1996.0257. [DOI] [PubMed] [Google Scholar]
  10. Norin M., Haeffner F., Hult K., Edholm O. Molecular dynamics simulations of an enzyme surrounded by vacuum, water, or a hydrophobic solvent. Biophys J. 1994 Aug;67(2):548–559. doi: 10.1016/S0006-3495(94)80515-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Perahia D., Mouawad L. Computation of low-frequency normal modes in macromolecules: improvements to the method of diagonalization in a mixed basis and application to hemoglobin. Comput Chem. 1995 Sep;19(3):241–246. doi: 10.1016/0097-8485(95)00011-g. [DOI] [PubMed] [Google Scholar]
  12. Peters G. H., Olsen O. H., Svendsen A., Wade R. C. Theoretical investigation of the dynamics of the active site lid in Rhizomucor miehei lipase. Biophys J. 1996 Jul;71(1):119–129. doi: 10.1016/S0006-3495(96)79207-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Peters G. H., Toxvaerd S., Olsen O. H., Svendsen A. Computational studies of the activation of lipases and the effect of a hydrophobic environment. Protein Eng. 1997 Feb;10(2):137–147. doi: 10.1093/protein/10.2.137. [DOI] [PubMed] [Google Scholar]
  14. Peters G. H., van Aalten D. M., Edholm O., Toxvaerd S., Bywater R. Dynamics of proteins in different solvent systems: analysis of essential motion in lipases. Biophys J. 1996 Nov;71(5):2245–2255. doi: 10.1016/S0006-3495(96)79428-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Plou F. J., Kowlessur D., Malthouse J. P., Mellor G. W., Hartshorn M. J., Pinitglang S., Patel H., Topham C. M., Thomas E. W., Verma C. Characterization of the electrostatic perturbation of a catalytic site (Cys)-S-/(His)-Im+H ion-pair in one type of serine proteinase architecture by kinetic and computational studies on chemically mutated subtilisin variants. J Mol Biol. 1996 Apr 19;257(5):1088–1111. doi: 10.1006/jmbi.1996.0225. [DOI] [PubMed] [Google Scholar]
  16. Roitberg A., Gerber R. B., Elber R., Ratner M. A. Anharmonic wave functions of proteins: quantum self-consistent field calculations of BPTI. Science. 1995 Jun 2;268(5215):1319–1322. doi: 10.1126/science.7539156. [DOI] [PubMed] [Google Scholar]
  17. SARDA L., DESNUELLE P. Action de la lipase pancréatique sur les esters en émulsion. Biochim Biophys Acta. 1958 Dec;30(3):513–521. doi: 10.1016/0006-3002(58)90097-0. [DOI] [PubMed] [Google Scholar]
  18. Thomas A., Field M. J., Perahia D. Analysis of the low-frequency normal modes of the R state of aspartate transcarbamylase and a comparison with the T state modes. J Mol Biol. 1996 Aug 23;261(3):490–506. doi: 10.1006/jmbi.1996.0478. [DOI] [PubMed] [Google Scholar]
  19. Wade R. C., Davis M. E., Luty B. A., Madura J. D., McCammon J. A. Gating of the active site of triose phosphate isomerase: Brownian dynamics simulations of flexible peptide loops in the enzyme. Biophys J. 1993 Jan;64(1):9–15. doi: 10.1016/S0006-3495(93)81335-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Wade R. C., Luty B. A., Demchuk E., Madura J. D., Davis M. E., Briggs J. M., McCammon J. A. Simulation of enzyme-substrate encounter with gated active sites. Nat Struct Biol. 1994 Jan;1(1):65–69. doi: 10.1038/nsb0194-65. [DOI] [PubMed] [Google Scholar]
  21. ben-Avraham D. Vibrational normal-mode spectrum of globular proteins. Phys Rev B Condens Matter. 1993 Jun 1;47(21):14559–14560. doi: 10.1103/physrevb.47.14559. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES