Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1998 Jun;7(6):1380–1387. doi: 10.1002/pro.5560070614

Crystal structure of Saccharomyces cerevisiae cytosolic aspartate aminotransferase.

C J Jeffery 1, T Barry 1, S Doonan 1, G A Petsko 1, D Ringe 1
PMCID: PMC2144045  PMID: 9655342

Abstract

The crystal structure of Saccharomyces cerevisiae cytoplasmic aspartate aminotransferase (EC 2.6.1.1) has been determined to 2.05 A resolution in the presence of the cofactor pyridoxal-5'-phosphate and the competitive inhibitor maleate. The structure was solved by the method of molecular replacement. The final value of the crystallographic R-factor after refinement was 23.1% with good geometry of the final model. The yeast cytoplasmic enzyme is a homodimer with two identical active sites containing residues from each subunit. It is found in the "closed" conformation with a bound maleate inhibitor in each active site. It shares the same three-dimensional fold and active site residues as the aspartate aminotransferases from Escherichia coli, chicken cytoplasm, and chicken mitochondria, although it shares less than 50% sequence identity with any of them. The availability of four similar enzyme structures from distant regions of the evolutionary tree provides a measure of tolerated changes that can arise during millions of years of evolution.

Full Text

The Full Text of this article is available as a PDF (4.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brünger A. T., Krukowski A., Erickson J. W. Slow-cooling protocols for crystallographic refinement by simulated annealing. Acta Crystallogr A. 1990 Jul 1;46(Pt 7):585–593. doi: 10.1107/s0108767390002355. [DOI] [PubMed] [Google Scholar]
  2. Brünger A. T., Kuriyan J., Karplus M. Crystallographic R factor refinement by molecular dynamics. Science. 1987 Jan 23;235(4787):458–460. doi: 10.1126/science.235.4787.458. [DOI] [PubMed] [Google Scholar]
  3. Cronin V. B., Maras B., Barra D., Doonan S. The amino acid sequence of the aspartate aminotransferase from baker's yeast (Saccharomyces cerevisiae). Biochem J. 1991 Jul 15;277(Pt 2):335–340. doi: 10.1042/bj2770335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ford G. C., Eichele G., Jansonius J. N. Three-dimensional structure of a pyridoxal-phosphate-dependent enzyme, mitochondrial aspartate aminotransferase. Proc Natl Acad Sci U S A. 1980 May;77(5):2559–2563. doi: 10.1073/pnas.77.5.2559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Jäger J., Moser M., Sauder U., Jansonius J. N. Crystal structures of Escherichia coli aspartate aminotransferase in two conformations. Comparison of an unliganded open and two liganded closed forms. J Mol Biol. 1994 Jun 3;239(2):285–305. doi: 10.1006/jmbi.1994.1368. [DOI] [PubMed] [Google Scholar]
  6. Kamitori S., Okamoto A., Hirotsu K., Higuchi T., Kuramitsu S., Kagamiyama H., Matsuura Y., Katsube Y. Three-dimensional structures of aspartate aminotransferase from Escherichia coli and its mutant enzyme at 2.5 A resolution. J Biochem. 1990 Aug;108(2):175–184. doi: 10.1093/oxfordjournals.jbchem.a123178. [DOI] [PubMed] [Google Scholar]
  7. Kirsch J. F., Eichele G., Ford G. C., Vincent M. G., Jansonius J. N., Gehring H., Christen P. Mechanism of action of aspartate aminotransferase proposed on the basis of its spatial structure. J Mol Biol. 1984 Apr 15;174(3):497–525. doi: 10.1016/0022-2836(84)90333-4. [DOI] [PubMed] [Google Scholar]
  8. Kleywegt G. J., Brünger A. T. Checking your imagination: applications of the free R value. Structure. 1996 Aug 15;4(8):897–904. doi: 10.1016/s0969-2126(96)00097-4. [DOI] [PubMed] [Google Scholar]
  9. McPhalen C. A., Vincent M. G., Jansonius J. N. X-ray structure refinement and comparison of three forms of mitochondrial aspartate aminotransferase. J Mol Biol. 1992 May 20;225(2):495–517. doi: 10.1016/0022-2836(92)90935-d. [DOI] [PubMed] [Google Scholar]
  10. Morris A. L., MacArthur M. W., Hutchinson E. G., Thornton J. M. Stereochemical quality of protein structure coordinates. Proteins. 1992 Apr;12(4):345–364. doi: 10.1002/prot.340120407. [DOI] [PubMed] [Google Scholar]
  11. Okamoto A., Higuchi T., Hirotsu K., Kuramitsu S., Kagamiyama H. X-ray crystallographic study of pyridoxal 5'-phosphate-type aspartate aminotransferases from Escherichia coli in open and closed form. J Biochem. 1994 Jul;116(1):95–107. doi: 10.1093/oxfordjournals.jbchem.a124509. [DOI] [PubMed] [Google Scholar]
  12. Smith D. L., Almo S. C., Toney M. D., Ringe D. 2.8-A-resolution crystal structure of an active-site mutant of aspartate aminotransferase from Escherichia coli. Biochemistry. 1989 Oct 3;28(20):8161–8167. doi: 10.1021/bi00446a030. [DOI] [PubMed] [Google Scholar]
  13. Winefield C. S., Farnden K. J., Reynolds P. H., Marshall C. J. Evolutionary analysis of aspartate aminotransferases. J Mol Evol. 1995 Apr;40(4):455–463. doi: 10.1007/BF00164031. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES