Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1998 Jul;7(7):1516–1523. doi: 10.1002/pro.5560070704

Cold rescue of the thermolabile tailspike intermediate at the junction between productive folding and off-pathway aggregation.

S D Betts 1, J King 1
PMCID: PMC2144048  PMID: 9684883

Abstract

Off-pathway intermolecular interactions between partially folded polypeptide chains often compete with correct intramolecular interactions, resulting in self-association of folding intermediates into the inclusion body state. Intermediates for both productive folding and off-pathway aggregation of the parallel beta-coil tailspike trimer of phage P22 have been identified in vivo and in vitro using native gel electrophoresis in the cold. Aggregation of folding intermediates was suppressed when refolding was initiated and allowed to proceed for a short period at 0 degrees C prior to warming to 20 degrees C. Yields of refolded tailspike trimers exceeding 80% were obtained using this temperature-shift procedure, first described by Xie and Wetlaufer (1996, Protein Sci 5:517-523). We interpret this as due to stabilization of the thermolabile monomeric intermediate at the junction between productive folding and off-pathway aggregation. Partially folded monomers, a newly identified dimer, and the protrimer folding intermediates were populated in the cold. These species were electrophoretically distinguished from the multimeric intermediates populated on the aggregation pathway. The productive protrimer intermediate is disulfide bonded (Robinson AS, King J, 1997, Nat Struct Biol 4:450-455), while the multimeric aggregation intermediates are not disulfide bonded. The partially folded dimer appears to be a precursor to the disulfide-bonded protrimer. The results support a model in which the junctional partially folded monomeric intermediate acquires resistance to aggregation in the cold by folding further to a conformation that is activated for correct recognition and subunit assembly.

Full Text

The Full Text of this article is available as a PDF (4.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beissinger M., Lee S. C., Steinbacher S., Reinemer P., Huber R., Yu M. H., Seckler R. Mutations that stabilize folding intermediates of phage P22 tailspike protein: folding in vivo and in vitro, stability, and structural context. J Mol Biol. 1995 May 26;249(1):185–194. doi: 10.1006/jmbi.1995.0288. [DOI] [PubMed] [Google Scholar]
  2. Bennett M. J., Schlunegger M. P., Eisenberg D. 3D domain swapping: a mechanism for oligomer assembly. Protein Sci. 1995 Dec;4(12):2455–2468. doi: 10.1002/pro.5560041202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
  4. Betts S., Haase-Pettingell C., King J. Mutational effects on inclusion body formation. Adv Protein Chem. 1997;50:243–264. doi: 10.1016/s0065-3233(08)60323-x. [DOI] [PubMed] [Google Scholar]
  5. Blake C., Serpell L. Synchrotron X-ray studies suggest that the core of the transthyretin amyloid fibril is a continuous beta-sheet helix. Structure. 1996 Aug 15;4(8):989–998. doi: 10.1016/s0969-2126(96)00104-9. [DOI] [PubMed] [Google Scholar]
  6. Brazil B. T., Cleland J. L., McDowell R. S., Skelton N. J., Paris K., Horowitz P. M. Model peptide studies demonstrate that amphipathic secondary structures can be recognized by the chaperonin GroEL (cpn60). J Biol Chem. 1997 Feb 21;272(8):5105–5111. doi: 10.1074/jbc.272.8.5105. [DOI] [PubMed] [Google Scholar]
  7. Brunschier R., Danner M., Seckler R. Interactions of phage P22 tailspike protein with GroE molecular chaperones during refolding in vitro. J Biol Chem. 1993 Feb 5;268(4):2767–2772. [PubMed] [Google Scholar]
  8. Carrell R. W., Lomas D. A. Conformational disease. Lancet. 1997 Jul 12;350(9071):134–138. doi: 10.1016/S0140-6736(97)02073-4. [DOI] [PubMed] [Google Scholar]
  9. Danner M., Seckler R. Mechanism of phage P22 tailspike protein folding mutations. Protein Sci. 1993 Nov;2(11):1869–1881. doi: 10.1002/pro.5560021109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ellis R. J., Hartl F. U. Protein folding in the cell: competing models of chaperonin function. FASEB J. 1996 Jan;10(1):20–26. doi: 10.1096/fasebj.10.1.8566542. [DOI] [PubMed] [Google Scholar]
  11. Fenton W. A., Horwich A. L. GroEL-mediated protein folding. Protein Sci. 1997 Apr;6(4):743–760. doi: 10.1002/pro.5560060401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Friguet B., Djavadi-Ohaniance L., Haase-Pettingell C. A., King J., Goldberg M. E. Properties of monoclonal antibodies selected for probing the conformation of wild type and mutant forms of the P22 tailspike endorhamnosidase. J Biol Chem. 1990 Jun 25;265(18):10347–10351. [PubMed] [Google Scholar]
  13. Fuchs A., Seiderer C., Seckler R. In vitro folding pathway of phage P22 tailspike protein. Biochemistry. 1991 Jul 2;30(26):6598–6604. doi: 10.1021/bi00240a032. [DOI] [PubMed] [Google Scholar]
  14. Goldenberg D. P., Smith D. H., King J. Genetic analysis of the folding pathway for the tail spike protein of phage P22. Proc Natl Acad Sci U S A. 1983 Dec;80(23):7060–7064. doi: 10.1073/pnas.80.23.7060. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Goldenberg D., King J. Trimeric intermediate in the in vivo folding and subunit assembly of the tail spike endorhamnosidase of bacteriophage P22. Proc Natl Acad Sci U S A. 1982 Jun;79(11):3403–3407. doi: 10.1073/pnas.79.11.3403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Haase-Pettingell C. A., King J. Formation of aggregates from a thermolabile in vivo folding intermediate in P22 tailspike maturation. A model for inclusion body formation. J Biol Chem. 1988 Apr 5;263(10):4977–4983. [PubMed] [Google Scholar]
  17. Haase-Pettingell C., King J. Prevalence of temperature sensitive folding mutations in the parallel beta coil domain of the phage P22 tailspike endorhamnosidase. J Mol Biol. 1997 Mar 21;267(1):88–102. doi: 10.1006/jmbi.1996.0841. [DOI] [PubMed] [Google Scholar]
  18. Kelly J. W. Alternative conformations of amyloidogenic proteins govern their behavior. Curr Opin Struct Biol. 1996 Feb;6(1):11–17. doi: 10.1016/s0959-440x(96)80089-3. [DOI] [PubMed] [Google Scholar]
  19. King J., Yu M. H. Mutational analysis of protein folding pathways: the P22 tailspike endorhamnosidase. Methods Enzymol. 1986;131:250–266. doi: 10.1016/0076-6879(86)31044-9. [DOI] [PubMed] [Google Scholar]
  20. Lomas D. A., Evans D. L., Finch J. T., Carrell R. W. The mechanism of Z alpha 1-antitrypsin accumulation in the liver. Nature. 1992 Jun 18;357(6379):605–607. doi: 10.1038/357605a0. [DOI] [PubMed] [Google Scholar]
  21. Marston F. A. The purification of eukaryotic polypeptides synthesized in Escherichia coli. Biochem J. 1986 Nov 15;240(1):1–12. doi: 10.1042/bj2400001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mendoza J. A., Lorimer G. H., Horowitz P. M. Chaperonin cpn60 from Escherichia coli protects the mitochondrial enzyme rhodanese against heat inactivation and supports folding at elevated temperatures. J Biol Chem. 1992 Sep 5;267(25):17631–17634. [PubMed] [Google Scholar]
  23. Mitraki A., Betton J. M., Desmadril M., Yon J. M. Quasi-irreversibility in the unfolding-refolding transition of phosphoglycerate kinase induced by guanidine hydrochloride. Eur J Biochem. 1987 Feb 16;163(1):29–34. doi: 10.1111/j.1432-1033.1987.tb10732.x. [DOI] [PubMed] [Google Scholar]
  24. Oberg K., Chrunyk B. A., Wetzel R., Fink A. L. Nativelike secondary structure in interleukin-1 beta inclusion bodies by attenuated total reflectance FTIR. Biochemistry. 1994 Mar 8;33(9):2628–2634. doi: 10.1021/bi00175a035. [DOI] [PubMed] [Google Scholar]
  25. Robinson A. S., King J. Disulphide-bonded intermediate on the folding and assembly pathway of a non-disulphide bonded protein. Nat Struct Biol. 1997 Jun;4(6):450–455. doi: 10.1038/nsb0697-450. [DOI] [PubMed] [Google Scholar]
  26. Sather S. K., King J. Intracellular trapping of a cytoplasmic folding intermediate of the phage P22 tailspike using iodoacetamide. J Biol Chem. 1994 Oct 14;269(41):25268–25276. [PubMed] [Google Scholar]
  27. Sauer R. T., Krovatin W., Poteete A. R., Berget P. B. Phage P22 tail protein: gene and amino acid sequence. Biochemistry. 1982 Nov 9;21(23):5811–5815. doi: 10.1021/bi00266a014. [DOI] [PubMed] [Google Scholar]
  28. Speed M. A., Morshead T., Wang D. I., King J. Conformation of P22 tailspike folding and aggregation intermediates probed by monoclonal antibodies. Protein Sci. 1997 Jan;6(1):99–108. doi: 10.1002/pro.5560060111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Speed M. A., Wang D. I., King J. Multimeric intermediates in the pathway to the aggregated inclusion body state for P22 tailspike polypeptide chains. Protein Sci. 1995 May;4(5):900–908. doi: 10.1002/pro.5560040509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Speed M. A., Wang D. I., King J. Specific aggregation of partially folded polypeptide chains: the molecular basis of inclusion body composition. Nat Biotechnol. 1996 Oct;14(10):1283–1287. doi: 10.1038/nbt1096-1283. [DOI] [PubMed] [Google Scholar]
  31. Steinbacher S., Baxa U., Miller S., Weintraub A., Seckler R., Huber R. Crystal structure of phage P22 tailspike protein complexed with Salmonella sp. O-antigen receptors. Proc Natl Acad Sci U S A. 1996 Oct 1;93(20):10584–10588. doi: 10.1073/pnas.93.20.10584. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Steinbacher S., Seckler R., Miller S., Steipe B., Huber R., Reinemer P. Crystal structure of P22 tailspike protein: interdigitated subunits in a thermostable trimer. Science. 1994 Jul 15;265(5170):383–386. doi: 10.1126/science.8023158. [DOI] [PubMed] [Google Scholar]
  33. Wetzel R. Mutations and off-pathway aggregation of proteins. Trends Biotechnol. 1994 May;12(5):193–198. doi: 10.1016/0167-7799(94)90082-5. [DOI] [PubMed] [Google Scholar]
  34. Xie Y., Wetlaufer D. B. Control of aggregation in protein refolding: the temperature-leap tactic. Protein Sci. 1996 Mar;5(3):517–523. doi: 10.1002/pro.5560050314. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES