Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1998 Jul;7(7):1647–1652. doi: 10.1002/pro.5560070722

Conserved sequence motifs among bacterial, eukaryotic, and archaeal phosphatases that define a new phosphohydrolase superfamily.

M C Thaller 1, S Schippa 1, G M Rossolini 1
PMCID: PMC2144050  PMID: 9684901

Abstract

Members of a new molecular family of bacterial nonspecific acid phosphatases (NSAPs), indicated as class C, were found to share significant sequence similarities to bacterial class B NSAPs and to some plant acid phosphatases, representing the first example of a family of bacterial NSAPs that has a relatively close eukaryotic counterpart. Despite the lack of an overall similarity, conserved sequence motifs were also identified among the above enzyme families (class B and class C bacterial NSAPs, and related plant phosphatases) and several other families of phosphohydrolases, including bacterial phosphoglycolate phosphatases, histidinol-phosphatase domains of the bacterial bifunctional enzymes imidazole-glycerolphosphate dehydratases, and bacterial, eukaryotic, and archaeal phosphoserine phosphatases and threalose-6-phosphatases. These conserved motifs are clustered within two domains, separated by a variable spacer region, according to the pattern [FILMAVT]-D-[ILFRMVY]-D-[GSNDE]-[TV]-[ILVAM]-[AT S VILMC]-X-¿YFWHKR)-X-¿YFWHNQ¿-X( 102,191)-¿KRHNQ¿-G-D-¿FYWHILVMC¿-¿QNH¿-¿FWYGP¿-D -¿PSNQYW¿. The dephosphorylating activity common to all these proteins supports the definition of this phosphatase motif and the inclusion of these enzymes into a superfamily of phosphohydrolases that we propose to indicate as "DDDD" after the presence of the four invariant aspartate residues. Database searches retrieved various hypothetical proteins of unknown function containing this or similar motifs, for which a phosphohydrolase activity could be hypothesized.

Full Text

The Full Text of this article is available as a PDF (716.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. Appel R. D., Bairoch A., Hochstrasser D. F. A new generation of information retrieval tools for biologists: the example of the ExPASy WWW server. Trends Biochem Sci. 1994 Jun;19(6):258–260. doi: 10.1016/0968-0004(94)90153-8. [DOI] [PubMed] [Google Scholar]
  3. Bairoch A., Bucher P., Hofmann K. The PROSITE database, its status in 1995. Nucleic Acids Res. 1996 Jan 1;24(1):189–196. doi: 10.1093/nar/24.1.189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Blattner F. R., Plunkett G., 3rd, Bloch C. A., Perna N. T., Burland V., Riley M., Collado-Vides J., Glasner J. D., Rode C. K., Mayhew G. F. The complete genome sequence of Escherichia coli K-12. Science. 1997 Sep 5;277(5331):1453–1462. doi: 10.1126/science.277.5331.1453. [DOI] [PubMed] [Google Scholar]
  5. Borgia P. T., Miao Y., Dodge C. L. The orlA gene from Aspergillus nidulans encodes a trehalose-6-phosphate phosphatase necessary for normal growth and chitin synthesis at elevated temperatures. Mol Microbiol. 1996 Jun;20(6):1287–1296. doi: 10.1111/j.1365-2958.1996.tb02647.x. [DOI] [PubMed] [Google Scholar]
  6. Bork P., Ouzounis C., Casari G., Schneider R., Sander C., Dolan M., Gilbert W., Gillevet P. M. Exploring the Mycoplasma capricolum genome: a minimal cell reveals its physiology. Mol Microbiol. 1995 Jun;16(5):955–967. doi: 10.1111/j.1365-2958.1995.tb02321.x. [DOI] [PubMed] [Google Scholar]
  7. Carlomagno M. S., Chiariotti L., Alifano P., Nappo A. G., Bruni C. B. Structure and function of the Salmonella typhimurium and Escherichia coli K-12 histidine operons. J Mol Biol. 1988 Oct 5;203(3):585–606. doi: 10.1016/0022-2836(88)90194-5. [DOI] [PubMed] [Google Scholar]
  8. Chiariotti L., Nappo A. G., Carlomagno M. S., Bruni C. B. Gene structure in the histidine operon of Escherichia coli. Identification and nucleotide sequence of the hisB gene. Mol Gen Genet. 1986 Jan;202(1):42–47. doi: 10.1007/BF00330514. [DOI] [PubMed] [Google Scholar]
  9. Collet J. F., Gerin I., Rider M. H., Veiga-da-Cunha M., Van Schaftingen E. Human L-3-phosphoserine phosphatase: sequence, expression and evidence for a phosphoenzyme intermediate. FEBS Lett. 1997 May 26;408(3):281–284. doi: 10.1016/s0014-5793(97)00438-9. [DOI] [PubMed] [Google Scholar]
  10. Daniels D. L., Plunkett G., 3rd, Burland V., Blattner F. R. Analysis of the Escherichia coli genome: DNA sequence of the region from 84.5 to 86.5 minutes. Science. 1992 Aug 7;257(5071):771–778. doi: 10.1126/science.1379743. [DOI] [PubMed] [Google Scholar]
  11. Davis R. E., Hardwick C., Tavernier P., Hodgson S., Singh H. RNA trans-splicing in flatworms. Analysis of trans-spliced mRNAs and genes in the human parasite, Schistosoma mansoni. J Biol Chem. 1995 Sep 15;270(37):21813–21819. doi: 10.1074/jbc.270.37.21813. [DOI] [PubMed] [Google Scholar]
  12. De Virgilio C., Bürckert N., Bell W., Jenö P., Boller T., Wiemken A. Disruption of TPS2, the gene encoding the 100-kDa subunit of the trehalose-6-phosphate synthase/phosphatase complex in Saccharomyces cerevisiae, causes accumulation of trehalose-6-phosphate and loss of trehalose-6-phosphate phosphatase activity. Eur J Biochem. 1993 Mar 1;212(2):315–323. doi: 10.1111/j.1432-1033.1993.tb17664.x. [DOI] [PubMed] [Google Scholar]
  13. Fraser C. M., Casjens S., Huang W. M., Sutton G. G., Clayton R., Lathigra R., White O., Ketchum K. A., Dodson R., Hickey E. K. Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature. 1997 Dec 11;390(6660):580–586. doi: 10.1038/37551. [DOI] [PubMed] [Google Scholar]
  14. Fraser C. M., Gocayne J. D., White O., Adams M. D., Clayton R. A., Fleischmann R. D., Bult C. J., Kerlavage A. R., Sutton G., Kelley J. M. The minimal gene complement of Mycoplasma genitalium. Science. 1995 Oct 20;270(5235):397–403. doi: 10.1126/science.270.5235.397. [DOI] [PubMed] [Google Scholar]
  15. Freiberg C., Fellay R., Bairoch A., Broughton W. J., Rosenthal A., Perret X. Molecular basis of symbiosis between Rhizobium and legumes. Nature. 1997 May 22;387(6631):394–401. doi: 10.1038/387394a0. [DOI] [PubMed] [Google Scholar]
  16. Gibson J. L., Falcone D. L., Tabita F. R. Nucleotide sequence, transcriptional analysis, and expression of genes encoded within the form I CO2 fixation operon of Rhodobacter sphaeroides. J Biol Chem. 1991 Aug 5;266(22):14646–14653. [PubMed] [Google Scholar]
  17. Green B. A., Farley J. E., Quinn-Dey T., Deich R. A., Zlotnick G. W. The e (P4) outer membrane protein of Haemophilus influenzae: biologic activity of anti-e serum and cloning and sequencing of the structural gene. Infect Immun. 1991 Sep;59(9):3191–3198. doi: 10.1128/iai.59.9.3191-3198.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Guerreiro P., Barreiros T., Soares H., Cyrne L., Maia e Silva A., Rodrigues-Pousada C. Sequencing of a 17.6 kb segment on the right arm of yeast chromosome VII reveals 12 ORFs, including CCT, ADE3 and TR-I genes, homologues of the yeast PMT and EF1G genes, of the human and bacterial electron-transferring flavoproteins (beta-chain) and of the Escherichia coli phosphoserine phosphohydrolase, and five new ORFs. Yeast. 1996 Mar 15;12(3):273–280. doi: 10.1002/(SICI)1097-0061(19960315)12:3%3C273::AID-YEA898%3E3.0.CO;2-1. [DOI] [PubMed] [Google Scholar]
  19. Hayashi S., Wu H. C. Lipoproteins in bacteria. J Bioenerg Biomembr. 1990 Jun;22(3):451–471. doi: 10.1007/BF00763177. [DOI] [PubMed] [Google Scholar]
  20. Himmelreich R., Hilbert H., Plagens H., Pirkl E., Li B. C., Herrmann R. Complete sequence analysis of the genome of the bacterium Mycoplasma pneumoniae. Nucleic Acids Res. 1996 Nov 15;24(22):4420–4449. doi: 10.1093/nar/24.22.4420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kaasen I., McDougall J., Strøm A. R. Analysis of the otsBA operon for osmoregulatory trehalose synthesis in Escherichia coli and homology of the OtsA and OtsB proteins to the yeast trehalose-6-phosphate synthase/phosphatase complex. Gene. 1994 Jul 22;145(1):9–15. doi: 10.1016/0378-1119(94)90316-6. [DOI] [PubMed] [Google Scholar]
  22. Kaneko T., Sato S., Kotani H., Tanaka A., Asamizu E., Nakamura Y., Miyajima N., Hirosawa M., Sugiura M., Sasamoto S. Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res. 1996 Jun 30;3(3):109–136. doi: 10.1093/dnares/3.3.109. [DOI] [PubMed] [Google Scholar]
  23. Klenk H. P., Clayton R. A., Tomb J. F., White O., Nelson K. E., Ketchum K. A., Dodson R. J., Gwinn M., Hickey E. K., Peterson J. D. The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature. 1997 Nov 27;390(6658):364–370. doi: 10.1038/37052. [DOI] [PubMed] [Google Scholar]
  24. Lyngstadaas A., Løbner-Olesen A., Boye E. Characterization of three genes in the dam-containing operon of Escherichia coli. Mol Gen Genet. 1995 Jun 10;247(5):546–554. doi: 10.1007/BF00290345. [DOI] [PubMed] [Google Scholar]
  25. Pond J. L., Eddy C. K., Mackenzie K. F., Conway T., Borecky D. J., Ingram L. O. Cloning, sequencing, and characterization of the principal acid phosphatase, the phoC+ product, from Zymomonas mobilis. J Bacteriol. 1989 Feb;171(2):767–774. doi: 10.1128/jb.171.2.767-774.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Schäferjohann J., Yoo J. G., Kusian B., Bowien B. The cbb operons of the facultative chemoautotroph Alcaligenes eutrophus encode phosphoglycolate phosphatase. J Bacteriol. 1993 Nov;175(22):7329–7340. doi: 10.1128/jb.175.22.7329-7340.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sensen C. W., Klenk H. P., Singh R. K., Allard G., Chan C. C., Liu Q. Y., Penny S. L., Young F., Schenk M. E., Gaasterland T. Organizational characteristics and information content of an archaeal genome: 156 kb of sequence from Sulfolobus solfataricus P2. Mol Microbiol. 1996 Oct;22(1):175–191. doi: 10.1111/j.1365-2958.1996.tb02666.x. [DOI] [PubMed] [Google Scholar]
  28. Thaller M. C., Berlutti F., Schippa S., Lombardi G., Rossolini G. M. Characterization and sequence of PhoC, the principal phosphate-irrepressible acid phosphatase of Morganella morganii. Microbiology. 1994 Jun;140(Pt 6):1341–1350. doi: 10.1099/00221287-140-6-1341. [DOI] [PubMed] [Google Scholar]
  29. Thaller M. C., Lombardi G., Berlutti F., Schippa S., Rossolini G. M. Cloning and characterization of the NapA acid phosphatase/phosphotransferase of Morganella morganii: identification of a new family of bacterial acid-phosphatase-encoding genes. Microbiology. 1995 Jan;141(Pt 1):147–154. doi: 10.1099/00221287-141-1-147. [DOI] [PubMed] [Google Scholar]
  30. Thaller M. C., Schippa S., Bonci A., Cresti S., Rossolini G. M. Identification of the gene (aphA) encoding the class B acid phosphatase/phosphotransferase of Escherichia coli MG1655 and characterization of its product. FEMS Microbiol Lett. 1997 Jan 15;146(2):191–198. doi: 10.1111/j.1574-6968.1997.tb10192.x. [DOI] [PubMed] [Google Scholar]
  31. Tomb J. F., White O., Kerlavage A. R., Clayton R. A., Sutton G. G., Fleischmann R. D., Ketchum K. A., Klenk H. P., Gill S., Dougherty B. A. The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature. 1997 Aug 7;388(6642):539–547. doi: 10.1038/41483. [DOI] [PubMed] [Google Scholar]
  32. Uchiya K. I., Tohsuji M., Nikai T., Sugihara H., Sasakawa C. Identification and characterization of phoN-Sf, a gene on the large plasmid of Shigella flexneri 2a encoding a nonspecific phosphatase. J Bacteriol. 1996 Aug;178(15):4548–4554. doi: 10.1128/jb.178.15.4548-4554.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Uerkvitz W. Periplasmic nonspecific acid phosphatase II from Salmonella typhimurium LT2. Crystallization, detergent reactivation, and phosphotransferase activity. J Biol Chem. 1988 Oct 25;263(30):15823–15830. [PubMed] [Google Scholar]
  34. Yoshida K., Fujimura M., Yanai N., Fujita Y. Cloning and sequencing of a 23-kb region of the Bacillus subtilis genome between the iol and hut operons. DNA Res. 1995 Dec 31;2(6):295–301. doi: 10.1093/dnares/2.6.295. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES