Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1998 Jul;7(7):1555–1563. doi: 10.1002/pro.5560070709

Conformational and dynamic properties of a 14 residue antifreeze glycopeptide from Antarctic cod.

A N Lane 1, L M Hays 1, R E Feeney 1, L M Crowe 1, J H Crowe 1
PMCID: PMC2144051  PMID: 9684888

Abstract

The 1H and 13C NMR spectra of a 14-residue antifreeze glycopeptide from Antarctic cod (Tetramatomnus borchgrevinki) containing two proline residues have been assigned. 13C NMR relaxation experiments indicate motional anisotropy of the peptide, with a tumbling time in water at 5 degrees C of 3-4 ns. The relaxation data and lack of long-range NOEs are consistent with a linear peptide undergoing significant segmental motion. However, extreme values of some coupling constants and strong sequential NOEs indicate regions of local order, which are most evident at the two ATPA subsequences. Similar spectroscopic properties were observed in the 16-residue analogue containing an Arg-Ala dipeptide added to the C-terminus. Molecular modeling also showed no evidence of long-range order, but the two ATPA subsequences were relatively well determined by the experimental data. These motifs were quite distinct from helical structures or beta turns commonly found in proteins, but rather resemble sections of an extended polyproline helix. Thus, the NMR data provide a description of the local order, which is of relevance to the mechanism of action of the antifreeze activity of the antifreeze glycopeptides as well as their ability to protect cells during hypothermic storage.

Full Text

The Full Text of this article is available as a PDF (882.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Burcham T. S., Osuga D. T., Yeh Y., Feeney R. E. A kinetic description of antifreeze glycoprotein activity. J Biol Chem. 1986 May 15;261(14):6390–6397. [PubMed] [Google Scholar]
  2. Bush C. A., Feeney R. E. Conformation of the glycotripeptide repeating unit of antifreeze glycoprotein of polar fish as determined from the fully assigned proton n.m.r. spectrum. Int J Pept Protein Res. 1986 Oct;28(4):386–397. doi: 10.1111/j.1399-3011.1986.tb03270.x. [DOI] [PubMed] [Google Scholar]
  3. Bush C. A., Ralapati S., Matson G. M., Yamasaki R. B., Osuga D. T., Yeh Y., Feeney R. E. Conformation of the antifreeze glycoprotein of polar fish. Arch Biochem Biophys. 1984 Aug 1;232(2):624–631. doi: 10.1016/0003-9861(84)90582-4. [DOI] [PubMed] [Google Scholar]
  4. Conte M. R., Conn G. L., Brown T., Lane A. N. Hydration of the RNA duplex r(CGCAAAUUUGCG)2 determined by NMR. Nucleic Acids Res. 1996 Oct 1;24(19):3693–3699. doi: 10.1093/nar/24.19.3693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Davies P. L., Sykes B. D. Antifreeze proteins. Curr Opin Struct Biol. 1997 Dec;7(6):828–834. doi: 10.1016/s0959-440x(97)80154-6. [DOI] [PubMed] [Google Scholar]
  6. DeVries A. L., Komatsu S. K., Feeney R. E. Chemical and physical properties of freezing point-depressing glycoproteins from Antarctic fishes. J Biol Chem. 1970 Jun 10;245(11):2901–2908. [PubMed] [Google Scholar]
  7. Drewes J. A., Rowlen K. L. Evidence for a gamma-turn motif in antifreeze glycopeptides. Biophys J. 1993 Sep;65(3):985–991. doi: 10.1016/S0006-3495(93)81167-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hays L. M., Feeney R. E., Crowe L. M., Crowe J. H., Oliver A. E. Antifreeze glycoproteins inhibit leakage from liposomes during thermotropic phase transitions. Proc Natl Acad Sci U S A. 1996 Jun 25;93(13):6835–6840. doi: 10.1073/pnas.93.13.6835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Homans S. W. A molecular mechanical force field for the conformational analysis of oligosaccharides: comparison of theoretical and crystal structures of Man alpha 1-3Man beta 1-4GlcNAc. Biochemistry. 1990 Oct 2;29(39):9110–9118. doi: 10.1021/bi00491a003. [DOI] [PubMed] [Google Scholar]
  10. Knight C. A., Driggers E., DeVries A. L. Adsorption to ice of fish antifreeze glycopeptides 7 and 8. Biophys J. 1993 Jan;64(1):252–259. doi: 10.1016/S0006-3495(93)81361-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lane A. N., Jenkins T. C., Frenkiel T. A. Hydration and solution structure of d(CGCAAATTTGCG)2 and its complex with propamidine from NMR and molecular modelling. Biochim Biophys Acta. 1997 Feb 7;1350(2):205–220. doi: 10.1016/s0167-4781(96)00161-3. [DOI] [PubMed] [Google Scholar]
  12. Leroy J. L., Broseta D., Guéron M. Proton exchange and base-pair kinetics of poly(rA).poly(rU) and poly(rI).poly(rC). J Mol Biol. 1985 Jul 5;184(1):165–178. doi: 10.1016/0022-2836(85)90050-6. [DOI] [PubMed] [Google Scholar]
  13. Mimura Y., Yamamoto Y., Inoue Y., Chûjô R. N.m.r. study of interaction between sugar and peptide moieties in mucin-type model glycopeptides. Int J Biol Macromol. 1992 Oct;14(5):242–248. doi: 10.1016/s0141-8130(05)80036-4. [DOI] [PubMed] [Google Scholar]
  14. Nieto P. M., Birdsall B., Morgan W. D., Frenkiel T. A., Gargaro A. R., Feeney J. Correlated bond rotations in interactions of arginine residues with ligand carboxylate groups in protein ligand complexes. FEBS Lett. 1997 Mar 17;405(1):16–20. doi: 10.1016/s0014-5793(97)00147-6. [DOI] [PubMed] [Google Scholar]
  15. Piotto M., Saudek V., Sklenár V. Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions. J Biomol NMR. 1992 Nov;2(6):661–665. doi: 10.1007/BF02192855. [DOI] [PubMed] [Google Scholar]
  16. Poppe L., van Halbeek H. NMR spectroscopy of hydroxyl protons in supercooled carbohydrates. Nat Struct Biol. 1994 Apr;1(4):215–216. doi: 10.1038/nsb0494-215. [DOI] [PubMed] [Google Scholar]
  17. Rao B. N., Bush C. A. Comparison by 1H-nmr spectroscopy of the conformation of the 2600 dalton antifreeze glycopeptide of polar cod with that of the high molecular weight antifreeze glycoprotein. Biopolymers. 1987 Aug;26(8):1227–1244. doi: 10.1002/bip.360260803. [DOI] [PubMed] [Google Scholar]
  18. Schwalbe H., Fiebig K. M., Buck M., Jones J. A., Grimshaw S. B., Spencer A., Glaser S. J., Smith L. J., Dobson C. M. Structural and dynamical properties of a denatured protein. Heteronuclear 3D NMR experiments and theoretical simulations of lysozyme in 8 M urea. Biochemistry. 1997 Jul 22;36(29):8977–8991. doi: 10.1021/bi970049q. [DOI] [PubMed] [Google Scholar]
  19. Tablin F., Oliver A. E., Walker N. J., Crowe L. M., Crowe J. H. Membrane phase transition of intact human platelets: correlation with cold-induced activation. J Cell Physiol. 1996 Aug;168(2):305–313. doi: 10.1002/(SICI)1097-4652(199608)168:2<305::AID-JCP9>3.0.CO;2-T. [DOI] [PubMed] [Google Scholar]
  20. Van Halbeek H., Dorland L., Vliegenthart J. F., Kochetkov N. K., Arbatsky N. P., Derevitskaya V. A. Characterization of the primary structure and the microheterogeneity of the carbohydrate chains of porcine blood-group H substance by 500-MHz 1H-NMR spectroscopy. Eur J Biochem. 1982 Sep;127(1):21–29. doi: 10.1111/j.1432-1033.1982.tb06832.x. [DOI] [PubMed] [Google Scholar]
  21. Wishart D. S., Bigam C. G., Holm A., Hodges R. S., Sykes B. D. 1H, 13C and 15N random coil NMR chemical shifts of the common amino acids. I. Investigations of nearest-neighbor effects. J Biomol NMR. 1995 Jan;5(1):67–81. doi: 10.1007/BF00227471. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES