Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1998 Jul;7(7):1564–1574. doi: 10.1002/pro.5560070710

Transition state in the folding of alpha-lactalbumin probed by the 6-120 disulfide bond.

M Ikeguchi 1, M Fujino 1, M Kato 1, K Kuwajima 1, S Sugai 1
PMCID: PMC2144055  PMID: 9684889

Abstract

The guanidine hydrochloride concentration dependence of the folding and unfolding rate constants of a derivative of alpha-lactalbumin, in which the 6-120 disulfide bond is selectively reduced and S-carboxymethylated, was measured and compared with that of disulfide-intact alpha-lactalbumin. The concentration dependence of the folding and unfolding rate constants was analyzed on the basis of the two alternative models, the intermediate-controlled folding model and the multiple-pathway folding model, that we had proposed previously. All of the data supported the multiple-pathway folding model. Therefore, the molten globule state that accumulates at an early stage of folding of alpha-lactalbumin is not an obligatory intermediate. The cleavage of the 6-120 disulfide bond resulted in acceleration of unfolding without changing the refolding rate, indicating that the loop closed by the 6-120 disulfide bond is unfolded in the transition state. It is theoretically shown that the chain entropy gain on removing the cross-link from a random coil chain with helical stretches can be comparable to that from an entirely random chain. Therefore, the present result is not inconsistent with the known structure in the molten globule intermediate. Based on this result and other knowledge obtained so far, the structure in the transition state of the folding reaction of alpha-lactalbumin is discussed.

Full Text

The Full Text of this article is available as a PDF (2.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexandrescu A. T., Evans P. A., Pitkeathly M., Baum J., Dobson C. M. Structure and dynamics of the acid-denatured molten globule state of alpha-lactalbumin: a two-dimensional NMR study. Biochemistry. 1993 Feb 23;32(7):1707–1718. doi: 10.1021/bi00058a003. [DOI] [PubMed] [Google Scholar]
  2. Alonso D. O., Dill K. A. Solvent denaturation and stabilization of globular proteins. Biochemistry. 1991 Jun 18;30(24):5974–5985. doi: 10.1021/bi00238a023. [DOI] [PubMed] [Google Scholar]
  3. Arai M., Kuwajima K. Rapid formation of a molten globule intermediate in refolding of alpha-lactalbumin. Fold Des. 1996;1(4):275–287. doi: 10.1016/s1359-0278(96)00041-7. [DOI] [PubMed] [Google Scholar]
  4. Balbach J., Forge V., Lau W. S., van Nuland N. A., Brew K., Dobson C. M. Protein folding monitored at individual residues during a two-dimensional NMR experiment. Science. 1996 Nov 15;274(5290):1161–1163. doi: 10.1126/science.274.5290.1161. [DOI] [PubMed] [Google Scholar]
  5. Balbach J., Forge V., van Nuland N. A., Winder S. L., Hore P. J., Dobson C. M. Following protein folding in real time using NMR spectroscopy. Nat Struct Biol. 1995 Oct;2(10):865–870. doi: 10.1038/nsb1095-865. [DOI] [PubMed] [Google Scholar]
  6. Baum J., Dobson C. M., Evans P. A., Hanley C. Characterization of a partly folded protein by NMR methods: studies on the molten globule state of guinea pig alpha-lactalbumin. Biochemistry. 1989 Jan 10;28(1):7–13. doi: 10.1021/bi00427a002. [DOI] [PubMed] [Google Scholar]
  7. Betz S. F. Disulfide bonds and the stability of globular proteins. Protein Sci. 1993 Oct;2(10):1551–1558. doi: 10.1002/pro.5560021002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bryngelson J. D., Onuchic J. N., Socci N. D., Wolynes P. G. Funnels, pathways, and the energy landscape of protein folding: a synthesis. Proteins. 1995 Mar;21(3):167–195. doi: 10.1002/prot.340210302. [DOI] [PubMed] [Google Scholar]
  9. Clarke J., Fersht A. R. Engineered disulfide bonds as probes of the folding pathway of barnase: increasing the stability of proteins against the rate of denaturation. Biochemistry. 1993 Apr 27;32(16):4322–4329. doi: 10.1021/bi00067a022. [DOI] [PubMed] [Google Scholar]
  10. Creighton T. E. How important is the molten globule for correct protein folding? Trends Biochem Sci. 1997 Jan;22(1):6–10. doi: 10.1016/s0968-0004(96)20030-1. [DOI] [PubMed] [Google Scholar]
  11. Denton M. E., Rothwarf D. M., Scheraga H. A. Kinetics of folding of guanidine-denatured hen egg white lysozyme and carboxymethyl(Cys6,Cys127)-lysozyme: a stopped-flow absorbance and fluorescence study. Biochemistry. 1994 Sep 20;33(37):11225–11236. doi: 10.1021/bi00203a019. [DOI] [PubMed] [Google Scholar]
  12. Ewbank J. J., Creighton T. E. Pathway of disulfide-coupled unfolding and refolding of bovine alpha-lactalbumin. Biochemistry. 1993 Apr 13;32(14):3677–3693. doi: 10.1021/bi00065a022. [DOI] [PubMed] [Google Scholar]
  13. Eyles S. J., Radford S. E., Robinson C. V., Dobson C. M. Kinetic consequences of the removal of a disulfide bridge on the folding of hen lysozyme. Biochemistry. 1994 Nov 8;33(44):13038–13048. doi: 10.1021/bi00248a013. [DOI] [PubMed] [Google Scholar]
  14. Fersht A. R. Characterizing transition states in protein folding: an essential step in the puzzle. Curr Opin Struct Biol. 1995 Feb;5(1):79–84. doi: 10.1016/0959-440x(95)80012-p. [DOI] [PubMed] [Google Scholar]
  15. Fersht A. R. Nucleation mechanisms in protein folding. Curr Opin Struct Biol. 1997 Feb;7(1):3–9. doi: 10.1016/s0959-440x(97)80002-4. [DOI] [PubMed] [Google Scholar]
  16. Gohda S., Shimizu A., Ikeguchi M., Sugai S. The superreactive disulfide bonds in alpha-lactalbumin and lysozyme. J Protein Chem. 1995 Nov;14(8):731–737. doi: 10.1007/BF01886912. [DOI] [PubMed] [Google Scholar]
  17. Goto Y., Hamaguchi K. Unfolding and refolding of the reduced constant fragment of the immunoglobulin light chain. Kinetic role of the intrachain disulfide bond. J Mol Biol. 1982 Apr 25;156(4):911–926. doi: 10.1016/0022-2836(82)90147-4. [DOI] [PubMed] [Google Scholar]
  18. Griko Y. V., Freire E., Privalov P. L. Energetics of the alpha-lactalbumin states: a calorimetric and statistical thermodynamic study. Biochemistry. 1994 Feb 22;33(7):1889–1899. doi: 10.1021/bi00173a036. [DOI] [PubMed] [Google Scholar]
  19. Harrison P. M., Sternberg M. J. Analysis and classification of disulphide connectivity in proteins. The entropic effect of cross-linkage. J Mol Biol. 1994 Dec 9;244(4):448–463. doi: 10.1006/jmbi.1994.1742. [DOI] [PubMed] [Google Scholar]
  20. Harushima Y., Kuwajima K., Sugai S. Hydrogen exchange of the tryptophan residues in bovine alpha-lactalbumin studied by UV spectroscopy. Biopolymers. 1988 Apr;27(4):629–644. doi: 10.1002/bip.360270407. [DOI] [PubMed] [Google Scholar]
  21. Hendrix T. M., Griko Y., Privalov P. Energetics of structural domains in alpha-lactalbumin. Protein Sci. 1996 May;5(5):923–931. doi: 10.1002/pro.5560050514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ikeguchi M., Kuwajima K., Mitani M., Sugai S. Evidence for identity between the equilibrium unfolding intermediate and a transient folding intermediate: a comparative study of the folding reactions of alpha-lactalbumin and lysozyme. Biochemistry. 1986 Nov 4;25(22):6965–6972. doi: 10.1021/bi00370a034. [DOI] [PubMed] [Google Scholar]
  23. Ikeguchi M., Sugai S., Fujino M., Sugawara T., Kuwajima K. Contribution of the 6-120 disulfide bond of alpha-lactalbumin to the stabilities of its native and molten globule states. Biochemistry. 1992 Dec 22;31(50):12695–12700. doi: 10.1021/bi00165a021. [DOI] [PubMed] [Google Scholar]
  24. Itzhaki L. S., Evans P. A., Dobson C. M., Radford S. E. Tertiary interactions in the folding pathway of hen lysozyme: kinetic studies using fluorescent probes. Biochemistry. 1994 May 3;33(17):5212–5220. doi: 10.1021/bi00183a026. [DOI] [PubMed] [Google Scholar]
  25. Kalnin N. N., Kuwajima K. Kinetic folding and unfolding of staphylococcal nuclease and its six mutants studied by stopped-flow circular dichroism. Proteins. 1995 Oct;23(2):163–176. doi: 10.1002/prot.340230206. [DOI] [PubMed] [Google Scholar]
  26. Kato S., Okamura M., Shimamoto N., Utiyama H. Spectral evidence for a rapidly formed structural intermediate in the refolding kinetics of hen egg-white lysozyme. Biochemistry. 1981 Mar 3;20(5):1080–1085. doi: 10.1021/bi00508a006. [DOI] [PubMed] [Google Scholar]
  27. Kato S., Shimamoto N., Utiyama H. Identification and characterization of the direct folding process of hen egg-white lysozyme. Biochemistry. 1982 Jan 5;21(1):38–43. doi: 10.1021/bi00530a007. [DOI] [PubMed] [Google Scholar]
  28. Kiefhaber T. Kinetic traps in lysozyme folding. Proc Natl Acad Sci U S A. 1995 Sep 26;92(20):9029–9033. doi: 10.1073/pnas.92.20.9029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Kuwajima K., Hiraoka Y., Ikeguchi M., Sugai S. Comparison of the transient folding intermediates in lysozyme and alpha-lactalbumin. Biochemistry. 1985 Feb 12;24(4):874–881. doi: 10.1021/bi00325a010. [DOI] [PubMed] [Google Scholar]
  30. Kuwajima K., Ikeguchi M., Sugawara T., Hiraoka Y., Sugai S. Kinetics of disulfide bond reduction in alpha-lactalbumin by dithiothreitol and molecular basis of superreactivity of the Cys6-Cys120 disulfide bond. Biochemistry. 1990 Sep 11;29(36):8240–8249. doi: 10.1021/bi00488a007. [DOI] [PubMed] [Google Scholar]
  31. Kuwajima K., Mitani M., Sugai S. Characterization of the critical state in protein folding. Effects of guanidine hydrochloride and specific Ca2+ binding on the folding kinetics of alpha-lactalbumin. J Mol Biol. 1989 Apr 5;206(3):547–561. doi: 10.1016/0022-2836(89)90500-7. [DOI] [PubMed] [Google Scholar]
  32. Kuwajima K. The molten globule state as a clue for understanding the folding and cooperativity of globular-protein structure. Proteins. 1989;6(2):87–103. doi: 10.1002/prot.340060202. [DOI] [PubMed] [Google Scholar]
  33. Kuwajima K. The molten globule state of alpha-lactalbumin. FASEB J. 1996 Jan;10(1):102–109. doi: 10.1096/fasebj.10.1.8566530. [DOI] [PubMed] [Google Scholar]
  34. Lin S. H., Konishi Y., Denton M. E., Scheraga H. A. Influence of an extrinsic cross-link on the folding pathway of ribonuclease A. Conformational and thermodynamic analysis of cross-linked (lysine7-lysine41)-ribonuclease a. Biochemistry. 1984 Nov 6;23(23):5504–5512. doi: 10.1021/bi00318a019. [DOI] [PubMed] [Google Scholar]
  35. Lopez-Hernandez E, Serrano L. Structure of the transition state for folding of the 129 aa protein CheY resembles that of a smaller protein, CI-2. Fold Des. 1995;1(1):43–55. [PubMed] [Google Scholar]
  36. Matagne A., Radford S. E., Dobson C. M. Fast and slow tracks in lysozyme folding: insight into the role of domains in the folding process. J Mol Biol. 1997 Apr 18;267(5):1068–1074. doi: 10.1006/jmbi.1997.0963. [DOI] [PubMed] [Google Scholar]
  37. Matouschek A., Fersht A. R. Application of physical organic chemistry to engineered mutants of proteins: Hammond postulate behavior in the transition state of protein folding. Proc Natl Acad Sci U S A. 1993 Aug 15;90(16):7814–7818. doi: 10.1073/pnas.90.16.7814. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Motoshima H., Ueda T., Imoto T. Analysis of the transition state in the unfolding of hen lysozyme by introduction of Gly-Pro and Pro-Gly sequences at the same site. J Biochem. 1996 Jun;119(6):1019–1023. doi: 10.1093/oxfordjournals.jbchem.a021342. [DOI] [PubMed] [Google Scholar]
  39. Myers J. K., Pace C. N., Scholtz J. M. Denaturant m values and heat capacity changes: relation to changes in accessible surface areas of protein unfolding. Protein Sci. 1995 Oct;4(10):2138–2148. doi: 10.1002/pro.5560041020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Nozaka M., Kuwajima K., Nitta K., Sugai S. Detection and characterization of the intermediate on the folding pathway of human alpha-lactalbumin. Biochemistry. 1978 Sep 5;17(18):3753–3758. doi: 10.1021/bi00611a013. [DOI] [PubMed] [Google Scholar]
  41. Pace C. N., Grimsley G. R., Thomson J. A., Barnett B. J. Conformational stability and activity of ribonuclease T1 with zero, one, and two intact disulfide bonds. J Biol Chem. 1988 Aug 25;263(24):11820–11825. [PubMed] [Google Scholar]
  42. Parker M. J., Spencer J., Clarke A. R. An integrated kinetic analysis of intermediates and transition states in protein folding reactions. J Mol Biol. 1995 Nov 10;253(5):771–786. doi: 10.1006/jmbi.1995.0590. [DOI] [PubMed] [Google Scholar]
  43. Pfeil W. Is the molten globule a third thermodynamic state of protein? The example of alpha-lactalbumin. Proteins. 1998 Jan;30(1):43–48. doi: 10.1002/(sici)1097-0134(19980101)30:1<43::aid-prot4>3.0.co;2-l. [DOI] [PubMed] [Google Scholar]
  44. Pike A. C., Brew K., Acharya K. R. Crystal structures of guinea-pig, goat and bovine alpha-lactalbumin highlight the enhanced conformational flexibility of regions that are significant for its action in lactose synthase. Structure. 1996 Jun 15;4(6):691–703. doi: 10.1016/s0969-2126(96)00075-5. [DOI] [PubMed] [Google Scholar]
  45. SCHELLMAN J. A. The stability of hydrogen-bonded peptide structures in aqueous solution. C R Trav Lab Carlsberg Chim. 1955;29(14-15):230–259. [PubMed] [Google Scholar]
  46. Schulman B. A., Kim P. S., Dobson C. M., Redfield C. A residue-specific NMR view of the non-cooperative unfolding of a molten globule. Nat Struct Biol. 1997 Aug;4(8):630–634. doi: 10.1038/nsb0897-630. [DOI] [PubMed] [Google Scholar]
  47. Schulman B. A., Kim P. S. Proline scanning mutagenesis of a molten globule reveals non-cooperative formation of a protein's overall topology. Nat Struct Biol. 1996 Aug;3(8):682–687. doi: 10.1038/nsb0896-682. [DOI] [PubMed] [Google Scholar]
  48. Schulman B. A., Redfield C., Peng Z. Y., Dobson C. M., Kim P. S. Different subdomains are most protected from hydrogen exchange in the molten globule and native states of human alpha-lactalbumin. J Mol Biol. 1995 Nov 10;253(5):651–657. doi: 10.1006/jmbi.1995.0579. [DOI] [PubMed] [Google Scholar]
  49. Segawa S., Sugihara M. Characterization of the transition state of lysozyme unfolding. I. Effect of protein-solvent interactions on the transition state. Biopolymers. 1984 Nov;23(11 Pt 2):2473–2488. doi: 10.1002/bip.360231122. [DOI] [PubMed] [Google Scholar]
  50. Segawa S., Sugihara M. Characterization of the transition state of lysozyme unfolding. II. Effects of the intrachain crosslinking and the inhibitor binding on the transition state. Biopolymers. 1984 Nov;23(11 Pt 2):2489–2498. doi: 10.1002/bip.360231123. [DOI] [PubMed] [Google Scholar]
  51. Shimizu A., Ikeguchi M., Sugai S. Unfolding of the molten globule state of alpha-lactalbumin studied by 1H NMR. Biochemistry. 1993 Dec 7;32(48):13198–13203. doi: 10.1021/bi00211a031. [DOI] [PubMed] [Google Scholar]
  52. Strausberg S., Alexander P., Wang L., Gallagher T., Gilliland G., Bryan P. An engineered disulfide cross-link accelerates the refolding rate of calcium-free subtilisin by 850-fold. Biochemistry. 1993 Oct 5;32(39):10371–10377. doi: 10.1021/bi00090a012. [DOI] [PubMed] [Google Scholar]
  53. Tanford C. Protein denaturation. Adv Protein Chem. 1968;23:121–282. doi: 10.1016/s0065-3233(08)60401-5. [DOI] [PubMed] [Google Scholar]
  54. Wildegger G., Kiefhaber T. Three-state model for lysozyme folding: triangular folding mechanism with an energetically trapped intermediate. J Mol Biol. 1997 Jul 11;270(2):294–304. doi: 10.1006/jmbi.1997.1030. [DOI] [PubMed] [Google Scholar]
  55. Wilson G., Hecht L., Barron L. D. The native-like tertiary fold in molten globule alpha-lactalbumin appears to be controlled by a continuous phase transition. J Mol Biol. 1996 Aug 23;261(3):341–347. doi: 10.1006/jmbi.1996.0467. [DOI] [PubMed] [Google Scholar]
  56. Wu L. C., Peng Z. Y., Kim P. S. Bipartite structure of the alpha-lactalbumin molten globule. Nat Struct Biol. 1995 Apr;2(4):281–286. doi: 10.1038/nsb0495-281. [DOI] [PubMed] [Google Scholar]
  57. Wu L. C., Schulman B. A., Peng Z. Y., Kim P. S. Disulfide determinants of calcium-induced packing in alpha-lactalbumin. Biochemistry. 1996 Jan 23;35(3):859–863. doi: 10.1021/bi951408p. [DOI] [PubMed] [Google Scholar]
  58. Yamasaki K., Ogasahara K., Yutani K., Oobatake M., Kanaya S. Folding pathway of Escherichia coli ribonuclease HI: a circular dichroism, fluorescence, and NMR study. Biochemistry. 1995 Dec 26;34(51):16552–16562. doi: 10.1021/bi00051a003. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES