Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1998 Jul;7(7):1620–1625. doi: 10.1002/pro.5560070716

Structure and stability of the P93G variant of ribonuclease A.

L W Schultz 1, S R Hargraves 1, T A Klink 1, R T Raines 1
PMCID: PMC2144059  PMID: 9684895

Abstract

The peptide bonds preceding Pro 93 and Pro 114 of bovine pancreatic ribonuclease A (RNase A) are in the cis conformation. The trans-to-cis isomerization of these bonds had been indicted as the slow step during protein folding. Here, site-directed mutagenesis was used to replace Pro 93 or Pro 114 with a glycine residue, and the crystalline structure of the P93G variant was determined by X-ray diffraction analysis to a resolution of 1.7 A. This structure is essentially identical to that of the wild-type protein, except for the 91-94 beta-turn containing the substitution. In the wild-type protein, the beta-turn is of type VIa. In the P93G variant, this turn is of type II with the peptide bond preceding Gly 93 being trans. The thermal stabilities of the P93G and P114G variants were assessed by differential scanning calorimetry and thermal denaturation experiments monitored by ultraviolet spectroscopy. The value of delta deltaGm which reports on the stability lost in the variants, is 1.5-fold greater for the P114G variant than for the P93G variant. The greater stability of the P93G variant is likely due to the relatively facile accommodation of residues 91-94 in a type II turn, which has a preference for a glycine residue in its i + 2 position.

Full Text

The Full Text of this article is available as a PDF (3.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Becktel W. J., Schellman J. A. Protein stability curves. Biopolymers. 1987 Nov;26(11):1859–1877. doi: 10.1002/bip.360261104. [DOI] [PubMed] [Google Scholar]
  2. Brandts J. F., Halvorson H. R., Brennan M. Consideration of the Possibility that the slow step in protein denaturation reactions is due to cis-trans isomerism of proline residues. Biochemistry. 1975 Nov 4;14(22):4953–4963. doi: 10.1021/bi00693a026. [DOI] [PubMed] [Google Scholar]
  3. Dodge R. W., Scheraga H. A. Folding and unfolding kinetics of the proline-to-alanine mutants of bovine pancreatic ribonuclease A. Biochemistry. 1996 Feb 6;35(5):1548–1559. doi: 10.1021/bi952348q. [DOI] [PubMed] [Google Scholar]
  4. Eberhardt E. S., Wittmayer P. K., Templer B. M., Raines R. T. Contribution of a tyrosine side chain to ribonuclease A catalysis and stability. Protein Sci. 1996 Aug;5(8):1697–1703. doi: 10.1002/pro.5560050823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fedorov A. A., Joseph-McCarthy D., Fedorov E., Sirakova D., Graf I., Almo S. C. Ionic interactions in crystalline bovine pancreatic ribonuclease A. Biochemistry. 1996 Dec 17;35(50):15962–15979. doi: 10.1021/bi961533g. [DOI] [PubMed] [Google Scholar]
  6. Garel J. R., Baldwin R. L. Both the fast and slow refolding reactions of ribonuclease A yield native enzyme. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3347–3351. doi: 10.1073/pnas.70.12.3347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Herzberg O., Moult J. Analysis of the steric strain in the polypeptide backbone of protein molecules. Proteins. 1991;11(3):223–229. doi: 10.1002/prot.340110307. [DOI] [PubMed] [Google Scholar]
  8. Hynes T. R., Kautz R. A., Goodman M. A., Gill J. F., Fox R. O. Transfer of a beta-turn structure to a new protein context. Nature. 1989 May 4;339(6219):73–76. doi: 10.1038/339073a0. [DOI] [PubMed] [Google Scholar]
  9. Jones T. A. Diffraction methods for biological macromolecules. Interactive computer graphics: FRODO. Methods Enzymol. 1985;115:157–171. doi: 10.1016/0076-6879(85)15014-7. [DOI] [PubMed] [Google Scholar]
  10. Kartha G., Bello J., Harker D. Tertiary structure of ribonuclease. Nature. 1967 Mar 4;213(5079):862–865. doi: 10.1038/213862a0. [DOI] [PubMed] [Google Scholar]
  11. Kim J. S., Raines R. T. Bovine seminal ribonuclease produced from a synthetic gene. J Biol Chem. 1993 Aug 15;268(23):17392–17396. [PubMed] [Google Scholar]
  12. Kunkel T. A., Roberts J. D., Zakour R. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 1987;154:367–382. doi: 10.1016/0076-6879(87)54085-x. [DOI] [PubMed] [Google Scholar]
  13. MacArthur M. W., Thornton J. M. Influence of proline residues on protein conformation. J Mol Biol. 1991 Mar 20;218(2):397–412. doi: 10.1016/0022-2836(91)90721-h. [DOI] [PubMed] [Google Scholar]
  14. Maigret B., Perahia D., Pullman B. Molecular orbital calculations on the conformation of polypeptides and proteins. IV. The conformation of the prolyl and hydroxyprolyl residues. J Theor Biol. 1970 Nov;29(2):275–291. doi: 10.1016/0022-5193(70)90022-6. [DOI] [PubMed] [Google Scholar]
  15. Matthews B. W. Genetic and structural analysis of the protein stability problem. Biochemistry. 1987 Nov 3;26(22):6885–6888. doi: 10.1021/bi00396a001. [DOI] [PubMed] [Google Scholar]
  16. Mayr L. M., Willbold D., Rösch P., Schmid F. X. Generation of a non-prolyl cis peptide bond in ribonuclease T1. J Mol Biol. 1994 Jul 22;240(4):288–293. doi: 10.1006/jmbi.1994.1446. [DOI] [PubMed] [Google Scholar]
  17. Merritt E. A., Murphy M. E. Raster3D Version 2.0. A program for photorealistic molecular graphics. Acta Crystallogr D Biol Crystallogr. 1994 Nov 1;50(Pt 6):869–873. doi: 10.1107/S0907444994006396. [DOI] [PubMed] [Google Scholar]
  18. Radzicka A., Pedersen L., Wolfenden R. Influences of solvent water on protein folding: free energies of solvation of cis and trans peptides are nearly identical. Biochemistry. 1988 Jun 14;27(12):4538–4541. doi: 10.1021/bi00412a047. [DOI] [PubMed] [Google Scholar]
  19. Raines Ronald T. Ribonuclease A. Chem Rev. 1998 May 7;98(3):1045–1066. doi: 10.1021/cr960427h. [DOI] [PubMed] [Google Scholar]
  20. Ramachandran G. N., Venkatachalam C. M. Stereochemical criteria for polypeptides and proteins. IV. Standard dimensions for the cis-peptide unit and conformation of cis-polypeptides. Biopolymers. 1968;6(9):1255–1262. doi: 10.1002/bip.1968.360060903. [DOI] [PubMed] [Google Scholar]
  21. Richardson J. S. The anatomy and taxonomy of protein structure. Adv Protein Chem. 1981;34:167–339. doi: 10.1016/s0065-3233(08)60520-3. [DOI] [PubMed] [Google Scholar]
  22. Rico M., Bruix M., Santoro J., Gonzalez C., Neira J. L., Nieto J. L., Herranz J. Sequential 1H-NMR assignment and solution structure of bovine pancreatic ribonuclease A. Eur J Biochem. 1989 Aug 15;183(3):623–638. doi: 10.1111/j.1432-1033.1989.tb21092.x. [DOI] [PubMed] [Google Scholar]
  23. Rico M., Santoro J., González C., Bruix M., Neira J. L., Nieto J. L., Herranz J. 3D structure of bovine pancreatic ribonuclease A in aqueous solution: an approach to tertiary structure determination from a small basis of 1H NMR NOE correlations. J Biomol NMR. 1991 Sep;1(3):283–298. doi: 10.1007/BF01875521. [DOI] [PubMed] [Google Scholar]
  24. Robertson A. D., Purisima E. O., Eastman M. A., Scheraga H. A. Proton NMR assignments and regular backbone structure of bovine pancreatic ribonuclease A in aqueous solution. Biochemistry. 1989 Jul 11;28(14):5930–5938. doi: 10.1021/bi00440a033. [DOI] [PubMed] [Google Scholar]
  25. Schultz D. A., Baldwin R. L. Cis proline mutants of ribonuclease A. I. Thermal stability. Protein Sci. 1992 Jul;1(7):910–916. doi: 10.1002/pro.5560010709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Stewart D. E., Sarkar A., Wampler J. E. Occurrence and role of cis peptide bonds in protein structures. J Mol Biol. 1990 Jul 5;214(1):253–260. doi: 10.1016/0022-2836(90)90159-J. [DOI] [PubMed] [Google Scholar]
  27. delCardayré S. B., Ribó M., Yokel E. M., Quirk D. J., Rutter W. J., Raines R. T. Engineering ribonuclease A: production, purification and characterization of wild-type enzyme and mutants at Gln11. Protein Eng. 1995 Mar;8(3):261–273. doi: 10.1093/protein/8.3.261. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES