Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1998 Jul;7(7):1583–1592. doi: 10.1002/pro.5560070712

A biomimetic strategy in the synthesis and fragmentation of cyclic protein.

J P Tam 1, Y A Lu 1
PMCID: PMC2144060  PMID: 9684891

Abstract

This paper describes a simple biomimetic strategy to prepare small cyclic proteins containing multiple disulfide bonds. Our strategy involves intramolecular acyl transfer reactions to assist both the synthesis and fragmentation of these highly constrained cyclic structures in aqueous solution. To illustrate our strategy, we synthesized the naturally occurring circulin B and cyclopsychotride (CPT), both consisting of 31 amino acid residues tightly packed in a cystine-knot motif with three disulfide bonds and an end-to-end cyclic form. The synthesis of these small cyclic proteins can be achieved by orthogonal ligation of free peptide thioester via the thia zip reaction, which involves a series of reversible thiol-thiolactone exchanges to arrive at an alpha-amino thiolactone, which then undergoes an irreversible, spontaneous ring contraction through an S,N-acyl migration to form the cyclic protein. A two-step disulfide formation strategy is employed for obtaining the desired disulfide-paired products. Partial acid hydrolysis through intramolecular acyl transfer of X-Ser, X-Thr, Asp-X, and Glu-X sequences is used to obtain the assignment of the circulins disulfide bond connectives. Both synthetic circulin B and CPT are identical to the natural products and, thus, the total synthesis confirms the disulfide connectivity of circulin B and CPT contain a cystine-knot motif of 1-4, 2-5, and 3-6. In general, our strategy, based on the convergence of chemical proteolysis and aminolysis of peptide bonds through acyl transfer, is biomimetic and provides a useful approach for the synthesis and characterization of large end-to-end cyclic peptides and small proteins.

Full Text

The Full Text of this article is available as a PDF (970.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bauer M., Sun Y., Degenhardt C., Kozikowski B. Assignment of all four disulfide bridges in echistatin. J Protein Chem. 1993 Dec;12(6):759–764. doi: 10.1007/BF01024934. [DOI] [PubMed] [Google Scholar]
  2. Cooper A. A., Stevens T. H. Protein splicing: self-splicing of genetically mobile elements at the protein level. Trends Biochem Sci. 1995 Sep;20(9):351–356. doi: 10.1016/s0968-0004(00)89075-1. [DOI] [PubMed] [Google Scholar]
  3. Daopin S., Piez K. A., Ogawa Y., Davies D. R. Crystal structure of transforming growth factor-beta 2: an unusual fold for the superfamily. Science. 1992 Jul 17;257(5068):369–373. doi: 10.1126/science.1631557. [DOI] [PubMed] [Google Scholar]
  4. Dawson P. E., Muir T. W., Clark-Lewis I., Kent S. B. Synthesis of proteins by native chemical ligation. Science. 1994 Nov 4;266(5186):776–779. doi: 10.1126/science.7973629. [DOI] [PubMed] [Google Scholar]
  5. Gran L. On the effect of a polypeptide isolated from "Kalata-Kalata" (Oldenlandia affinis DC) on the oestrogen dominated uterus. Acta Pharmacol Toxicol (Copenh) 1973;33(5):400–408. doi: 10.1111/j.1600-0773.1973.tb01541.x. [DOI] [PubMed] [Google Scholar]
  6. Gray W. R. Disulfide structures of highly bridged peptides: a new strategy for analysis. Protein Sci. 1993 Oct;2(10):1732–1748. doi: 10.1002/pro.5560021017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gray W. R. Echistatin disulfide bridges: selective reduction and linkage assignment. Protein Sci. 1993 Oct;2(10):1749–1755. doi: 10.1002/pro.5560021018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Heitz A., Chiche L., Le-Nguyen D., Castro B. 1H 2D NMR and distance geometry study of the folding of Ecballium elaterium trypsin inhibitor, a member of the squash inhibitors family. Biochemistry. 1989 Mar 21;28(6):2392–2398. doi: 10.1021/bi00432a009. [DOI] [PubMed] [Google Scholar]
  9. Hirata R., Ohsumk Y., Nakano A., Kawasaki H., Suzuki K., Anraku Y. Molecular structure of a gene, VMA1, encoding the catalytic subunit of H(+)-translocating adenosine triphosphatase from vacuolar membranes of Saccharomyces cerevisiae. J Biol Chem. 1990 Apr 25;265(12):6726–6733. [PubMed] [Google Scholar]
  10. Holak T. A., Gondol D., Otlewski J., Wilusz T. Determination of the complete three-dimensional structure of the trypsin inhibitor from squash seeds in aqueous solution by nuclear magnetic resonance and a combination of distance geometry and dynamical simulated annealing. J Mol Biol. 1989 Dec 5;210(3):635–648. doi: 10.1016/0022-2836(89)90137-x. [DOI] [PubMed] [Google Scholar]
  11. Kane P. M., Yamashiro C. T., Wolczyk D. F., Neff N., Goebl M., Stevens T. H. Protein splicing converts the yeast TFP1 gene product to the 69-kD subunit of the vacuolar H(+)-adenosine triphosphatase. Science. 1990 Nov 2;250(4981):651–657. doi: 10.1126/science.2146742. [DOI] [PubMed] [Google Scholar]
  12. Nielsen K. J., Alewood D., Andrews J., Kent S. B., Craik D. J. An 1H NMR determination of the three-dimensional structures of mirror-image forms of a Leu-5 variant of the trypsin inhibitor from Ecballium elaterium (EETI-II). Protein Sci. 1994 Feb;3(2):291–302. doi: 10.1002/pro.5560030213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Pallaghy P. K., Nielsen K. J., Craik D. J., Norton R. S. A common structural motif incorporating a cystine knot and a triple-stranded beta-sheet in toxic and inhibitory polypeptides. Protein Sci. 1994 Oct;3(10):1833–1839. doi: 10.1002/pro.5560031022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Rees D. C., Lipscomb W. N. Structure of the potato inhibitor complex of carboxypeptidase A at 2.5-A resolution. Proc Natl Acad Sci U S A. 1980 Aug;77(8):4633–4637. doi: 10.1073/pnas.77.8.4633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Saether O., Craik D. J., Campbell I. D., Sletten K., Juul J., Norman D. G. Elucidation of the primary and three-dimensional structure of the uterotonic polypeptide kalata B1. Biochemistry. 1995 Apr 4;34(13):4147–4158. doi: 10.1021/bi00013a002. [DOI] [PubMed] [Google Scholar]
  16. Schlunegger M. P., Grütter M. G. An unusual feature revealed by the crystal structure at 2.2 A resolution of human transforming growth factor-beta 2. Nature. 1992 Jul 30;358(6385):430–434. doi: 10.1038/358430a0. [DOI] [PubMed] [Google Scholar]
  17. Tam J. P., Lu Y. A., Liu C. F., Shao J. Peptide synthesis using unprotected peptides through orthogonal coupling methods. Proc Natl Acad Sci U S A. 1995 Dec 19;92(26):12485–12489. doi: 10.1073/pnas.92.26.12485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Wetlaufer D. B. Nonenzymatic formation and isomerization of protein disulfides. Methods Enzymol. 1984;107:301–304. doi: 10.1016/0076-6879(84)07020-8. [DOI] [PubMed] [Google Scholar]
  19. Witherup K. M., Bogusky M. J., Anderson P. S., Ramjit H., Ransom R. W., Wood T., Sardana M. Cyclopsychotride A, a biologically active, 31-residue cyclic peptide isolated from Psychotria longipes. J Nat Prod. 1994 Dec;57(12):1619–1625. doi: 10.1021/np50114a002. [DOI] [PubMed] [Google Scholar]
  20. Zhou Z. R., Smith D. L. Assignment of disulfide bonds in proteins by partial acid hydrolysis and mass spectrometry. J Protein Chem. 1990 Oct;9(5):523–532. doi: 10.1007/BF01025005. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES