Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1998 Jul;7(7):1485–1494. doi: 10.1002/pro.5560070701

Crystal structure of an engineered Cro monomer bound nonspecifically to DNA: possible implications for nonspecific binding by the wild-type protein.

R A Albright 1, M C Mossing 1, B W Matthews 1
PMCID: PMC2144066  PMID: 9684880

Abstract

The structure has been determined at 3.0 A resolution of a complex of engineered monomeric Cro repressor with a seven-base pair DNA fragment. Although the sequence of the DNA corresponds to the consensus half-operator that is recognized by each subunit of the wild-type Cro dimer, the complex that is formed in the crystals by the isolated monomer appears to correspond to a sequence-independent mode of association. The overall orientation of the protein relative to the DNA is markedly different from that observed for Cro dimer bound to a consensus operator. The recognition helix is rotated 48 degrees further out of the major groove, while the turn region of the helix-turn-helix remains in contact with the DNA backbone. All of the direct base-specific interactions seen in the wild-type Cro-operator complex are lost. Virtually all of the ionic interactions with the DNA backbone, however, are maintained, as is the subset of contacts between the DNA backbone and a channel on the protein surface. Overall, 25% less surface area is buried at the protein DNA interface than for half of the wild-type Cro-operator complex, and the contacts are more ionic in character due to a reduction of hydrogen bonding and van der Waals interactions. Based on this crystal structure, model building was used to develop a possible model for the sequence-nonspecific interaction of the wild-type Cro dimer with DNA. In the sequence-specific complex, the DNA is bent, the protein dimer undergoes a large hinge-bending motion relative to the uncomplexed form, and the complex is twofold symmetric. In contrast, in the proposed nonspecific complex the DNA is straight, the protein retains a conformation similar to the apo form, and the complex lacks twofold symmetry. The model is consistent with thermodynamic, chemical, and mutagenic studies, and suggests that hinge bending of the Cro dimer may be critical in permitting the transition from the binding of protein at generic sites on the DNA to binding at high affinity operator sites.

Full Text

The Full Text of this article is available as a PDF (10.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albright R. A., Matthews B. W. How Cro and lambda-repressor distinguish between operators: the structural basis underlying a genetic switch. Proc Natl Acad Sci U S A. 1998 Mar 31;95(7):3431–3436. doi: 10.1073/pnas.95.7.3431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Albright R. A., Mossing M. C., Matthews B. W. High-resolution structure of an engineered Cro monomer shows changes in conformation relative to the native dimer. Biochemistry. 1996 Jan 23;35(3):735–742. doi: 10.1021/bi951958n. [DOI] [PubMed] [Google Scholar]
  3. Anderson W. F., Cygler M., Vandonselaar M., Ohlendorf D. H., Matthews B. W., Kim J., Takeda Y. Crystallographic data for complexes of the Cro repressor with DNA. J Mol Biol. 1983 Aug 25;168(4):903–906. doi: 10.1016/s0022-2836(83)80082-5. [DOI] [PubMed] [Google Scholar]
  4. Anderson W. F., Ohlendorf D. H., Takeda Y., Matthews B. W. Structure of the cro repressor from bacteriophage lambda and its interaction with DNA. Nature. 1981 Apr 30;290(5809):754–758. doi: 10.1038/290754a0. [DOI] [PubMed] [Google Scholar]
  5. Berg O. G., Winter R. B., von Hippel P. H. Diffusion-driven mechanisms of protein translocation on nucleic acids. 1. Models and theory. Biochemistry. 1981 Nov 24;20(24):6929–6948. doi: 10.1021/bi00527a028. [DOI] [PubMed] [Google Scholar]
  6. Erie D. A., Yang G., Schultz H. C., Bustamante C. DNA bending by Cro protein in specific and nonspecific complexes: implications for protein site recognition and specificity. Science. 1994 Dec 2;266(5190):1562–1566. doi: 10.1126/science.7985026. [DOI] [PubMed] [Google Scholar]
  7. Gewirth D. T., Sigler P. B. The basis for half-site specificity explored through a non-cognate steroid receptor-DNA complex. Nat Struct Biol. 1995 May;2(5):386–394. doi: 10.1038/nsb0595-386. [DOI] [PubMed] [Google Scholar]
  8. Hamlin R. Multiwire area X-ray diffractometers. Methods Enzymol. 1985;114:416–452. doi: 10.1016/0076-6879(85)14029-2. [DOI] [PubMed] [Google Scholar]
  9. Howard A. J., Nielsen C., Xuong N. H. Software for a diffractometer with multiwire area detector. Methods Enzymol. 1985;114:452–472. doi: 10.1016/0076-6879(85)14030-9. [DOI] [PubMed] [Google Scholar]
  10. Hubbard A. J., Bracco L. P., Eisenbeis S. J., Gayle R. B., Beaton G., Caruthers M. H. Role of the Cro repressor carboxy-terminal domain and flexible dimer linkage in operator and nonspecific DNA binding. Biochemistry. 1990 Oct 2;29(39):9241–9249. doi: 10.1021/bi00491a019. [DOI] [PubMed] [Google Scholar]
  11. Jana R., Hazbun T. R., Mollah A. K., Mossing M. C. A folded monomeric intermediate in the formation of lambda Cro dimer-DNA complexes. J Mol Biol. 1997 Oct 24;273(2):402–416. doi: 10.1006/jmbi.1997.1256. [DOI] [PubMed] [Google Scholar]
  12. Kirpichnikov M. P., Yartzev A. P., Minchenkova L. E., Chernov B. K., Ivanov V. I. The absence of non-local conformational changes in OR3 operator DNA on complexing with the cro repressor. J Biomol Struct Dyn. 1985 Dec;3(3):529–536. doi: 10.1080/07391102.1985.10508440. [DOI] [PubMed] [Google Scholar]
  13. Lavery R., Sklenar H. The definition of generalized helicoidal parameters and of axis curvature for irregular nucleic acids. J Biomol Struct Dyn. 1988 Aug;6(1):63–91. doi: 10.1080/07391102.1988.10506483. [DOI] [PubMed] [Google Scholar]
  14. Lee S. J., Shirakawa M., Akutsu H., Kyogoku Y., Shiraishi M., Kitano K., Shin M., Ohtsuka E., Ikehara M. Base sequence-specific interactions of operator DNA fragments with the lambda-cro repressor coupled with changes in their conformations. EMBO J. 1987 Apr;6(4):1129–1135. doi: 10.1002/j.1460-2075.1987.tb04868.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Luisi B. F., Xu W. X., Otwinowski Z., Freedman L. P., Yamamoto K. R., Sigler P. B. Crystallographic analysis of the interaction of the glucocorticoid receptor with DNA. Nature. 1991 Aug 8;352(6335):497–505. doi: 10.1038/352497a0. [DOI] [PubMed] [Google Scholar]
  16. Malinina L. V., Makhaldiani V. V., Vainshtein B. K., Kirpichnikov M. P., Skriabin K. G. Kristally nespetsificheskogo kompleksa cro-repressora s DNK. Dokl Akad Nauk SSSR. 1985 Sep-Oct;284(1):229–232. [PubMed] [Google Scholar]
  17. Matthews B. W. Solvent content of protein crystals. J Mol Biol. 1968 Apr 28;33(2):491–497. doi: 10.1016/0022-2836(68)90205-2. [DOI] [PubMed] [Google Scholar]
  18. Mollah A. K., Aleman M. A., Albright R. A., Mossing M. C. Core packing defects in an engineered Cro monomer corrected by combinatorial mutagenesis. Biochemistry. 1996 Jan 23;35(3):743–748. doi: 10.1021/bi951959f. [DOI] [PubMed] [Google Scholar]
  19. Mossing M. C., Sauer R. T. Stable, monomeric variants of lambda Cro obtained by insertion of a designed beta-hairpin sequence. Science. 1990 Dec 21;250(4988):1712–1715. doi: 10.1126/science.2148648. [DOI] [PubMed] [Google Scholar]
  20. Mossing M. C. Solution structure and dynamics of a designed monomeric variant of the lambda Cro repressor. Protein Sci. 1998 Apr;7(4):983–993. doi: 10.1002/pro.5560070416. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Pendergrast P. S., Ebright Y. W., Ebright R. H. High-specificity DNA cleavage agent: design and application to kilobase and megabase DNA substrates. Science. 1994 Aug 12;265(5174):959–962. doi: 10.1126/science.8052855. [DOI] [PubMed] [Google Scholar]
  22. Sidorova N. Y., Rau D. C. Differences in water release for the binding of EcoRI to specific and nonspecific DNA sequences. Proc Natl Acad Sci U S A. 1996 Oct 29;93(22):12272–12277. doi: 10.1073/pnas.93.22.12272. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Steitz T. A., Fletterick R. J., Anderson W. F., Anderson C. M. High resolution x-ray structure of yeast hexokinase, an allosteric protein exhibiting a non-symmetric arrangement of subunits. J Mol Biol. 1976 Jun 14;104(1):197–122. doi: 10.1016/0022-2836(76)90009-7. [DOI] [PubMed] [Google Scholar]
  24. Takeda Y., Kim J. G., Caday C. G., Steers E., Jr, Ohlendorf D. H., Anderson W. F., Matthews B. W. Different interactions used by Cro repressor in specific and nonspecific DNA binding. J Biol Chem. 1986 Jul 5;261(19):8608–8616. [PubMed] [Google Scholar]
  25. Takeda Y., Ross P. D., Mudd C. P. Thermodynamics of Cro protein-DNA interactions. Proc Natl Acad Sci U S A. 1992 Sep 1;89(17):8180–8184. doi: 10.1073/pnas.89.17.8180. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Torigoe C., Kidokoro S., Takimoto M., Kyogoku Y., Wada A. Spectroscopic studies on lambda cro protein-DNA interactions. J Mol Biol. 1991 Jun 20;219(4):733–746. doi: 10.1016/0022-2836(91)90668-v. [DOI] [PubMed] [Google Scholar]
  27. Tronrud D. E. Conjugate-direction minimization: an improved method for the refinement of macromolecules. Acta Crystallogr A. 1992 Nov 1;48(Pt 6):912–916. doi: 10.1107/s0108767392005415. [DOI] [PubMed] [Google Scholar]
  28. Weber I. T., Steitz T. A. A model for the non-specific binding of catabolite gene activator protein to DNA. Nucleic Acids Res. 1984 Nov 26;12(22):8475–8487. doi: 10.1093/nar/12.22.8475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Winkler F. K., Banner D. W., Oefner C., Tsernoglou D., Brown R. S., Heathman S. P., Bryan R. K., Martin P. D., Petratos K., Wilson K. S. The crystal structure of EcoRV endonuclease and of its complexes with cognate and non-cognate DNA fragments. EMBO J. 1993 May;12(5):1781–1795. doi: 10.2210/pdb4rve/pdb. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES