Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1998 Jul;7(7):1506–1515. doi: 10.1002/pro.5560070703

A conformational equilibrium in a protein fragment caused by two consecutive capping boxes: 1H-, 13C-NMR, and mutational analysis.

R Guerois 1, F Cordier-Ochsenbein 1, F Baleux 1, T Huynh-Dinh 1, J M Neumann 1, A Sanson 1
PMCID: PMC2144069  PMID: 9684882

Abstract

The conformational properties of an 18 residues peptide spanning the entire sequence, L1KTPA5QFDAD10ELRAA15MKG, of the first helix (A-helix) of domain 2 of annexin I, were thoroughly investigated. This fragment exhibits several singular features, and in particular, two successive potential capping boxes, T3xxQ6 and D8xxE11. The former corresponds to the native hydrogen bond network stabilizing the alpha helix N-terminus in the protein; the latter is a non-native capping box able to break the helix at residue D8, and is observed in the domain 2 partially folded state. Using 2D-NMR techniques, we showed that two main populations of conformers coexist in aqueous solution. The first corresponds to a single helix extending from T3 to K17. The second corresponds to a broken helix at residue Ds. Four mutants, T3A, F7A, D8A, and E11A, were designed to further analyze the role of key amino acids in the equilibrium between the two ensembles of conformers. The sensitivity of NMR parameters to account for the variations in the populations of conformers was evaluated for each peptide. Our data show the delta13Calpha chemical shift to be the most relevant parameter. We used it to estimate the population ratio in the various peptides between the two main ensembles of conformers, the full helix and the broken helix. For the WT, E11A, and F7A peptides, these ratios are respectively 35/65, 60/40, 60/40. Our results were compared to the data obtained from helix/coil transition algorithms.

Full Text

The Full Text of this article is available as a PDF (3.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arcus V. L., Vuilleumier S., Freund S. M., Bycroft M., Fersht A. R. A comparison of the pH, urea, and temperature-denatured states of barnase by heteronuclear NMR: implications for the initiation of protein folding. J Mol Biol. 1995 Nov 24;254(2):305–321. doi: 10.1006/jmbi.1995.0618. [DOI] [PubMed] [Google Scholar]
  2. Arvidsson K., Jarvet J., Allard P., Ehrenberg A. Solution structure by 1H and dynamics by natural abundance 13C NMR of a receptor recognising peptide derived from a C-terminal fragment of neuropeptide Y. J Biomol NMR. 1994 Sep;4(5):653–672. doi: 10.1007/BF00404276. [DOI] [PubMed] [Google Scholar]
  3. Cordier-Ochsenbein F., Guerois R., Baleux F., Huynh-Dinh T., Chaffotte A., Neumann J. M., Sanson A. Folding properties of an annexin I domain: a 1H-15N NMR and CD study. Biochemistry. 1996 Aug 13;35(32):10347–10357. doi: 10.1021/bi960747v. [DOI] [PubMed] [Google Scholar]
  4. Dyson H. J., Merutka G., Waltho J. P., Lerner R. A., Wright P. E. Folding of peptide fragments comprising the complete sequence of proteins. Models for initiation of protein folding. I. Myohemerythrin. J Mol Biol. 1992 Aug 5;226(3):795–817. doi: 10.1016/0022-2836(92)90633-u. [DOI] [PubMed] [Google Scholar]
  5. Dyson H. J., Sayre J. R., Merutka G., Shin H. C., Lerner R. A., Wright P. E. Folding of peptide fragments comprising the complete sequence of proteins. Models for initiation of protein folding. II. Plastocyanin. J Mol Biol. 1992 Aug 5;226(3):819–835. doi: 10.1016/0022-2836(92)90634-v. [DOI] [PubMed] [Google Scholar]
  6. Farrow N. A., Zhang O., Forman-Kay J. D., Kay L. E. Characterization of the backbone dynamics of folded and denatured states of an SH3 domain. Biochemistry. 1997 Mar 4;36(9):2390–2402. doi: 10.1021/bi962548h. [DOI] [PubMed] [Google Scholar]
  7. Gronenborn A. M., Clore G. M. Identification of N-terminal helix capping boxes by means of 13C chemical shifts. J Biomol NMR. 1994 May;4(3):455–458. doi: 10.1007/BF00179351. [DOI] [PubMed] [Google Scholar]
  8. Harper E. T., Rose G. D. Helix stop signals in proteins and peptides: the capping box. Biochemistry. 1993 Aug 3;32(30):7605–7609. doi: 10.1021/bi00081a001. [DOI] [PubMed] [Google Scholar]
  9. Huyghues-Despointes B. M., Scholtz J. M., Baldwin R. L. Effect of a single aspartate on helix stability at different positions in a neutral alanine-based peptide. Protein Sci. 1993 Oct;2(10):1604–1611. doi: 10.1002/pro.5560021006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jiménez M. A., Muñoz V., Rico M., Serrano L. Helix stop and start signals in peptides and proteins. The capping box does not necessarily prevent helix elongation. J Mol Biol. 1994 Sep 30;242(4):487–496. doi: 10.1006/jmbi.1994.1596. [DOI] [PubMed] [Google Scholar]
  11. Kemmink J., Creighton T. E. Local conformations of peptides representing the entire sequence of bovine pancreatic trypsin inhibitor and their roles in folding. J Mol Biol. 1993 Dec 5;234(3):861–878. doi: 10.1006/jmbi.1993.1631. [DOI] [PubMed] [Google Scholar]
  12. Lee M. S., Palmer A. G., 3rd, Wright P. E. Relationship between 1H and 13C NMR chemical shifts and the secondary and tertiary structure of a zinc finger peptide. J Biomol NMR. 1992 Jul;2(4):307–322. doi: 10.1007/BF01874810. [DOI] [PubMed] [Google Scholar]
  13. Macquaire F., Baleux F., Huynh-Dinh T., Neumann J. M., Sanson A. 1H-NMR conformational study of a synthetic peptide derived from the consensus sequence of annexins. Int J Pept Protein Res. 1992 Feb;39(2):117–122. doi: 10.1111/j.1399-3011.1992.tb00780.x. [DOI] [PubMed] [Google Scholar]
  14. Marion D., Wüthrich K. Application of phase sensitive two-dimensional correlated spectroscopy (COSY) for measurements of 1H-1H spin-spin coupling constants in proteins. Biochem Biophys Res Commun. 1983 Jun 29;113(3):967–974. doi: 10.1016/0006-291x(83)91093-8. [DOI] [PubMed] [Google Scholar]
  15. Merutka G., Morikis D., Brüschweiler R., Wright P. E. NMR evidence for multiple conformations in a highly helical model peptide. Biochemistry. 1993 Dec 7;32(48):13089–13097. doi: 10.1021/bi00211a019. [DOI] [PubMed] [Google Scholar]
  16. Muñoz V., Blanco F. J., Serrano L. The hydrophobic-staple motif and a role for loop-residues in alpha-helix stability and protein folding. Nat Struct Biol. 1995 May;2(5):380–385. doi: 10.1038/nsb0595-380. [DOI] [PubMed] [Google Scholar]
  17. Muñoz V., Cronet P., López-Hernández E., Serrano L. Analysis of the effect of local interactions on protein stability. Fold Des. 1996;1(3):167–178. doi: 10.1016/s1359-0278(96)00029-6. [DOI] [PubMed] [Google Scholar]
  18. Muñoz V., Lopez E. M., Jager M., Serrano L. Kinetic characterization of the chemotactic protein from Escherichia coli, CheY. Kinetic analysis of the inverse hydrophobic effect. Biochemistry. 1994 May 17;33(19):5858–5866. doi: 10.1021/bi00185a025. [DOI] [PubMed] [Google Scholar]
  19. Muñoz V., Serrano L. Analysis of i,i+5 and i,i+8 hydrophobic interactions in a helical model peptide bearing the hydrophobic staple motif. Biochemistry. 1995 Nov 21;34(46):15301–15306. doi: 10.1021/bi00046a039. [DOI] [PubMed] [Google Scholar]
  20. Muñoz V., Serrano L. Development of the multiple sequence approximation within the AGADIR model of alpha-helix formation: comparison with Zimm-Bragg and Lifson-Roig formalisms. Biopolymers. 1997 Apr 15;41(5):495–509. doi: 10.1002/(SICI)1097-0282(19970415)41:5<495::AID-BIP2>3.0.CO;2-H. [DOI] [PubMed] [Google Scholar]
  21. Muñoz V., Serrano L. Elucidating the folding problem of helical peptides using empirical parameters. II. Helix macrodipole effects and rational modification of the helical content of natural peptides. J Mol Biol. 1995 Jan 20;245(3):275–296. doi: 10.1006/jmbi.1994.0023. [DOI] [PubMed] [Google Scholar]
  22. Muñoz V., Serrano L. Elucidating the folding problem of helical peptides using empirical parameters. III. Temperature and pH dependence. J Mol Biol. 1995 Jan 20;245(3):297–308. doi: 10.1006/jmbi.1994.0024. [DOI] [PubMed] [Google Scholar]
  23. Muñoz V., Serrano L., Jiménez M. A., Rico M. Structural analysis of peptides encompassing all alpha-helices of three alpha/beta parallel proteins: Che-Y, flavodoxin and P21-ras: implications for alpha-helix stability and the folding of alpha/beta parallel proteins. J Mol Biol. 1995 Apr 7;247(4):648–669. doi: 10.1016/s0022-2836(05)80145-7. [DOI] [PubMed] [Google Scholar]
  24. Odaert B., Baleux F., Huynh-Dinh T., Neumann J. M., Sanson A. Nonnative capping structure initiates helix folding in an annexin I fragment. A 1H NMR conformational study. Biochemistry. 1995 Oct 3;34(39):12820–12829. doi: 10.1021/bi00039a043. [DOI] [PubMed] [Google Scholar]
  25. Prieto J., Wilmans M., Jiménez M. A., Rico M., Serrano L. Non-native local interactions in protein folding and stability: introducing a helical tendency in the all beta-sheet alpha-spectrin SH3 domain. J Mol Biol. 1997 May 16;268(4):760–778. doi: 10.1006/jmbi.1997.0984. [DOI] [PubMed] [Google Scholar]
  26. Rance M., Sørensen O. W., Bodenhausen G., Wagner G., Ernst R. R., Wüthrich K. Improved spectral resolution in cosy 1H NMR spectra of proteins via double quantum filtering. Biochem Biophys Res Commun. 1983 Dec 16;117(2):479–485. doi: 10.1016/0006-291x(83)91225-1. [DOI] [PubMed] [Google Scholar]
  27. Raynal P., Pollard H. B. Annexins: the problem of assessing the biological role for a gene family of multifunctional calcium- and phospholipid-binding proteins. Biochim Biophys Acta. 1994 Apr 5;1197(1):63–93. doi: 10.1016/0304-4157(94)90019-1. [DOI] [PubMed] [Google Scholar]
  28. Reymond M. T., Merutka G., Dyson H. J., Wright P. E. Folding propensities of peptide fragments of myoglobin. Protein Sci. 1997 Mar;6(3):706–716. doi: 10.1002/pro.5560060320. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Roder H., Colón W. Kinetic role of early intermediates in protein folding. Curr Opin Struct Biol. 1997 Feb;7(1):15–28. doi: 10.1016/s0959-440x(97)80004-8. [DOI] [PubMed] [Google Scholar]
  30. Rothwarf D. M., Scheraga H. A. Role of non-native aromatic and hydrophobic interactions in the folding of hen egg white lysozyme. Biochemistry. 1996 Oct 29;35(43):13797–13807. doi: 10.1021/bi9608119. [DOI] [PubMed] [Google Scholar]
  31. Ruiz-Sanz J., de Prat Gay G., Otzen D. E., Fersht A. R. Protein fragments as models for events in protein folding pathways: protein engineering analysis of the association of two complementary fragments of the barley chymotrypsin inhibitor 2 (CI-2). Biochemistry. 1995 Feb 7;34(5):1695–1701. doi: 10.1021/bi00005a026. [DOI] [PubMed] [Google Scholar]
  32. Schwalbe H., Fiebig K. M., Buck M., Jones J. A., Grimshaw S. B., Spencer A., Glaser S. J., Smith L. J., Dobson C. M. Structural and dynamical properties of a denatured protein. Heteronuclear 3D NMR experiments and theoretical simulations of lysozyme in 8 M urea. Biochemistry. 1997 Jul 22;36(29):8977–8991. doi: 10.1021/bi970049q. [DOI] [PubMed] [Google Scholar]
  33. Seale J. W., Srinivasan R., Rose G. D. Sequence determinants of the capping box, a stabilizing motif at the N-termini of alpha-helices. Protein Sci. 1994 Oct;3(10):1741–1745. doi: 10.1002/pro.5560031014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Serrano L. Comparison between the phi distribution of the amino acids in the protein database and NMR data indicates that amino acids have various phi propensities in the random coil conformation. J Mol Biol. 1995 Nov 24;254(2):322–333. doi: 10.1006/jmbi.1995.0619. [DOI] [PubMed] [Google Scholar]
  35. Shortle D. The denatured state (the other half of the folding equation) and its role in protein stability. FASEB J. 1996 Jan;10(1):27–34. doi: 10.1096/fasebj.10.1.8566543. [DOI] [PubMed] [Google Scholar]
  36. Smith L. J., Alexandrescu A. T., Pitkeathly M., Dobson C. M. Solution structure of a peptide fragment of human alpha-lactalbumin in trifluoroethanol: a model for local structure in the molten globule. Structure. 1994 Aug 15;2(8):703–712. doi: 10.1016/s0969-2126(00)00071-x. [DOI] [PubMed] [Google Scholar]
  37. Smith L. J., Bolin K. A., Schwalbe H., MacArthur M. W., Thornton J. M., Dobson C. M. Analysis of main chain torsion angles in proteins: prediction of NMR coupling constants for native and random coil conformations. J Mol Biol. 1996 Jan 26;255(3):494–506. doi: 10.1006/jmbi.1996.0041. [DOI] [PubMed] [Google Scholar]
  38. Stapley B. J., Rohl C. A., Doig A. J. Addition of side chain interactions to modified Lifson-Roig helix-coil theory: application to energetics of phenylalanine-methionine interactions. Protein Sci. 1995 Nov;4(11):2383–2391. doi: 10.1002/pro.5560041117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Thanabal V., Omecinsky D. O., Reily M. D., Cody W. L. The 13C chemical shifts of amino acids in aqueous solution containing organic solvents: application to the secondary structure characterization of peptides in aqueous trifluoroethanol solution. J Biomol NMR. 1994 Jan;4(1):47–59. doi: 10.1007/BF00178335. [DOI] [PubMed] [Google Scholar]
  40. Viguera A. R., Villegas V., Avilés F. X., Serrano L. Favourable native-like helical local interactions can accelerate protein folding. Fold Des. 1997;2(1):23–33. doi: 10.1016/S1359-0278(97)00003-5. [DOI] [PubMed] [Google Scholar]
  41. Waltho J. P., Feher V. A., Merutka G., Dyson H. J., Wright P. E. Peptide models of protein folding initiation sites. 1. Secondary structure formation by peptides corresponding to the G- and H-helices of myoglobin. Biochemistry. 1993 Jun 29;32(25):6337–6347. doi: 10.1021/bi00076a006. [DOI] [PubMed] [Google Scholar]
  42. Wishart D. S., Bigam C. G., Holm A., Hodges R. S., Sykes B. D. 1H, 13C and 15N random coil NMR chemical shifts of the common amino acids. I. Investigations of nearest-neighbor effects. J Biomol NMR. 1995 Jan;5(1):67–81. doi: 10.1007/BF00227471. [DOI] [PubMed] [Google Scholar]
  43. Yao J., Dyson H. J., Wright P. E. Chemical shift dispersion and secondary structure prediction in unfolded and partly folded proteins. FEBS Lett. 1997 Dec 15;419(2-3):285–289. doi: 10.1016/s0014-5793(97)01474-9. [DOI] [PubMed] [Google Scholar]
  44. Yao J., Feher V. A., Espejo B. F., Reymond M. T., Wright P. E., Dyson H. J. Stabilization of a type VI turn in a family of linear peptides in water solution. J Mol Biol. 1994 Nov 4;243(4):736–753. doi: 10.1016/0022-2836(94)90044-2. [DOI] [PubMed] [Google Scholar]
  45. Zhang M., Yuan T., Vogel H. J. A peptide analog of the calmodulin-binding domain of myosin light chain kinase adopts an alpha-helical structure in aqueous trifluoroethanol. Protein Sci. 1993 Nov;2(11):1931–1937. doi: 10.1002/pro.5560021114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Zhang O., Kay L. E., Shortle D., Forman-Kay J. D. Comprehensive NOE characterization of a partially folded large fragment of staphylococcal nuclease Delta131Delta, using NMR methods with improved resolution. J Mol Biol. 1997 Sep 12;272(1):9–20. doi: 10.1006/jmbi.1997.1219. [DOI] [PubMed] [Google Scholar]
  47. Zhou H. X., Lyu P., Wemmer D. E., Kallenbach N. R. Alpha helix capping in synthetic model peptides by reciprocal side chain-main chain interactions: evidence for an N terminal "capping box". Proteins. 1994 Jan;18(1):1–7. doi: 10.1002/prot.340180103. [DOI] [PubMed] [Google Scholar]
  48. de Dios A. C., Oldfield E. Recent progress in understanding chemical shifts. Solid State Nucl Magn Reson. 1996 Apr;6(2):101–125. doi: 10.1016/0926-2040(95)01207-9. [DOI] [PubMed] [Google Scholar]
  49. de Prat Gay G., Ruiz-Sanz J., Neira J. L., Corrales F. J., Otzen D. E., Ladurner A. G., Fersht A. R. Conformational pathway of the polypeptide chain of chymotrypsin inhibitor-2 growing from its N terminus in vitro. Parallels with the protein folding pathway. J Mol Biol. 1995 Dec 15;254(5):968–979. doi: 10.1006/jmbi.1995.0669. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES