Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1998 Aug;7(8):1772–1780. doi: 10.1002/pro.5560070812

Selecting near-native conformations in homology modeling: the role of molecular mechanics and solvation terms.

A Janardhan 1, S Vajda 1
PMCID: PMC2144075  PMID: 10082374

Abstract

A free energy function, combining molecular mechanics energy with empirical solvation and entropic terms, is used for ranking near-native conformations that occur in the conformational search steps of homology modeling, i.e., side-chain search and loop closure calculations. Correlations between the free energy and RMS deviation from the X-ray structure are established. It is shown that generally both molecular mechanics and solvation/entropic terms should be included in the potential. The identification of near-native backbone conformations is accomplished primarily by the molecular mechanics term that becomes the dominant contribution to the free energy if the backbone is even slightly strained, as frequently occurs in loop closure calculations. Both terms become equally important if a sufficiently accurate backbone conformation is found. Finally, the selection of the best side-chain positions for a fixed backbone is almost completely governed by the solvation term. The discriminatory power of the combined potential is demonstrated by evaluating the free energies of protein models submitted to the first meeting on Critical Assessment of techniques for protein Structure Prediction (CASP1), and comparing them to the free energies of the native conformations.

Full Text

The Full Text of this article is available as a PDF (917.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abagyan R., Totrov M. Biased probability Monte Carlo conformational searches and electrostatic calculations for peptides and proteins. J Mol Biol. 1994 Jan 21;235(3):983–1002. doi: 10.1006/jmbi.1994.1052. [DOI] [PubMed] [Google Scholar]
  2. Bruccoleri R. E., Haber E., Novotný J. Structure of antibody hypervariable loops reproduced by a conformational search algorithm. Nature. 1988 Oct 6;335(6190):564–568. doi: 10.1038/335564a0. [DOI] [PubMed] [Google Scholar]
  3. Eisenberg D., McLachlan A. D. Solvation energy in protein folding and binding. Nature. 1986 Jan 16;319(6050):199–203. doi: 10.1038/319199a0. [DOI] [PubMed] [Google Scholar]
  4. Fidelis K., Stern P. S., Bacon D., Moult J. Comparison of systematic search and database methods for constructing segments of protein structure. Protein Eng. 1994 Aug;7(8):953–960. doi: 10.1093/protein/7.8.953. [DOI] [PubMed] [Google Scholar]
  5. Godzik A., Kolinski A., Skolnick J. Topology fingerprint approach to the inverse protein folding problem. J Mol Biol. 1992 Sep 5;227(1):227–238. doi: 10.1016/0022-2836(92)90693-e. [DOI] [PubMed] [Google Scholar]
  6. Huang E. S., Subbiah S., Tsai J., Levitt M. Using a hydrophobic contact potential to evaluate native and near-native folds generated by molecular dynamics simulations. J Mol Biol. 1996 Apr 5;257(3):716–725. doi: 10.1006/jmbi.1996.0196. [DOI] [PubMed] [Google Scholar]
  7. Jackson R. M., Sternberg M. J. A continuum model for protein-protein interactions: application to the docking problem. J Mol Biol. 1995 Jul 7;250(2):258–275. doi: 10.1006/jmbi.1995.0375. [DOI] [PubMed] [Google Scholar]
  8. Jernigan R. L., Bahar I. Structure-derived potentials and protein simulations. Curr Opin Struct Biol. 1996 Apr;6(2):195–209. doi: 10.1016/s0959-440x(96)80075-3. [DOI] [PubMed] [Google Scholar]
  9. Johnson M. S., Srinivasan N., Sowdhamini R., Blundell T. L. Knowledge-based protein modeling. Crit Rev Biochem Mol Biol. 1994;29(1):1–68. doi: 10.3109/10409239409086797. [DOI] [PubMed] [Google Scholar]
  10. Maiorov V. N., Crippen G. M. Contact potential that recognizes the correct folding of globular proteins. J Mol Biol. 1992 Oct 5;227(3):876–888. doi: 10.1016/0022-2836(92)90228-c. [DOI] [PubMed] [Google Scholar]
  11. Mosimann S., Meleshko R., James M. N. A critical assessment of comparative molecular modeling of tertiary structures of proteins. Proteins. 1995 Nov;23(3):301–317. doi: 10.1002/prot.340230305. [DOI] [PubMed] [Google Scholar]
  12. Moult J., James M. N. An algorithm for determining the conformation of polypeptide segments in proteins by systematic search. Proteins. 1986 Oct;1(2):146–163. doi: 10.1002/prot.340010207. [DOI] [PubMed] [Google Scholar]
  13. Nauchitel V., Villaverde M. C., Sussman F. Solvent accessibility as a predictive tool for the free energy of inhibitor binding to the HIV-1 protease. Protein Sci. 1995 Jul;4(7):1356–1364. doi: 10.1002/pro.5560040711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Nicholls A., Sharp K. A., Honig B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins. 1991;11(4):281–296. doi: 10.1002/prot.340110407. [DOI] [PubMed] [Google Scholar]
  15. Novotny J., Bruccoleri R. E., Saul F. A. On the attribution of binding energy in antigen-antibody complexes McPC 603, D1.3, and HyHEL-5. Biochemistry. 1989 May 30;28(11):4735–4749. doi: 10.1021/bi00437a034. [DOI] [PubMed] [Google Scholar]
  16. Novotný J., Rashin A. A., Bruccoleri R. E. Criteria that discriminate between native proteins and incorrectly folded models. Proteins. 1988;4(1):19–30. doi: 10.1002/prot.340040105. [DOI] [PubMed] [Google Scholar]
  17. Park B., Levitt M. Energy functions that discriminate X-ray and near native folds from well-constructed decoys. J Mol Biol. 1996 May 3;258(2):367–392. doi: 10.1006/jmbi.1996.0256. [DOI] [PubMed] [Google Scholar]
  18. Pellequer J. L., Chen S. W. Does conformational free energy distinguish loop conformations in proteins? Biophys J. 1997 Nov;73(5):2359–2375. doi: 10.1016/S0006-3495(97)78266-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Pickett S. D., Sternberg M. J. Empirical scale of side-chain conformational entropy in protein folding. J Mol Biol. 1993 Jun 5;231(3):825–839. doi: 10.1006/jmbi.1993.1329. [DOI] [PubMed] [Google Scholar]
  20. Sippl M. J. Boltzmann's principle, knowledge-based mean fields and protein folding. An approach to the computational determination of protein structures. J Comput Aided Mol Des. 1993 Aug;7(4):473–501. doi: 10.1007/BF02337562. [DOI] [PubMed] [Google Scholar]
  21. Sippl M. J. Knowledge-based potentials for proteins. Curr Opin Struct Biol. 1995 Apr;5(2):229–235. doi: 10.1016/0959-440x(95)80081-6. [DOI] [PubMed] [Google Scholar]
  22. Smith K. C., Honig B. Evaluation of the conformational free energies of loops in proteins. Proteins. 1994 Feb;18(2):119–132. doi: 10.1002/prot.340180205. [DOI] [PubMed] [Google Scholar]
  23. Vajda S., Jafri M. S., Sezerman O. U., DeLisi C. Necessary conditions for avoiding incorrect polypeptide folds in conformational search by energy minimization. Biopolymers. 1993 Jan;33(1):173–192. doi: 10.1002/bip.360330117. [DOI] [PubMed] [Google Scholar]
  24. Vajda S., Sippl M., Novotny J. Empirical potentials and functions for protein folding and binding. Curr Opin Struct Biol. 1997 Apr;7(2):222–228. doi: 10.1016/s0959-440x(97)80029-2. [DOI] [PubMed] [Google Scholar]
  25. Vajda S., Weng Z., DeLisi C. Extracting hydrophobicity parameters from solute partition and protein mutation/unfolding experiments. Protein Eng. 1995 Nov;8(11):1081–1092. doi: 10.1093/protein/8.11.1081. [DOI] [PubMed] [Google Scholar]
  26. Vajda S., Weng Z., Rosenfeld R., DeLisi C. Effect of conformational flexibility and solvation on receptor-ligand binding free energies. Biochemistry. 1994 Nov 29;33(47):13977–13988. doi: 10.1021/bi00251a004. [DOI] [PubMed] [Google Scholar]
  27. Verkhivker G., Appelt K., Freer S. T., Villafranca J. E. Empirical free energy calculations of ligand-protein crystallographic complexes. I. Knowledge-based ligand-protein interaction potentials applied to the prediction of human immunodeficiency virus 1 protease binding affinity. Protein Eng. 1995 Jul;8(7):677–691. doi: 10.1093/protein/8.7.677. [DOI] [PubMed] [Google Scholar]
  28. Wallqvist A., Jernigan R. L., Covell D. G. A preference-based free-energy parameterization of enzyme-inhibitor binding. Applications to HIV-1-protease inhibitor design. Protein Sci. 1995 Sep;4(9):1881–1903. doi: 10.1002/pro.5560040923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Weng Z., Delisi C., Vajda S. Empirical free energy calculation: comparison to calorimetric data. Protein Sci. 1997 Sep;6(9):1976–1984. doi: 10.1002/pro.5560060918. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Weng Z., Vajda S., Delisi C. Prediction of protein complexes using empirical free energy functions. Protein Sci. 1996 Apr;5(4):614–626. doi: 10.1002/pro.5560050406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Wesson L., Eisenberg D. Atomic solvation parameters applied to molecular dynamics of proteins in solution. Protein Sci. 1992 Feb;1(2):227–235. doi: 10.1002/pro.5560010204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wilson C., Doniach S. A computer model to dynamically simulate protein folding: studies with crambin. Proteins. 1989;6(2):193–209. doi: 10.1002/prot.340060208. [DOI] [PubMed] [Google Scholar]
  33. Yue K., Dill K. A. Folding proteins with a simple energy function and extensive conformational searching. Protein Sci. 1996 Feb;5(2):254–261. doi: 10.1002/pro.5560050209. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES