Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1998 Aug;7(8):1700–1716. doi: 10.1002/pro.5560070805

Analysis of zinc binding sites in protein crystal structures.

I L Alberts 1, K Nadassy 1, S J Wodak 1
PMCID: PMC2144076  PMID: 10082367

Abstract

The geometrical properties of zinc binding sites in a dataset of high quality protein crystal structures deposited in the Protein Data Bank have been examined to identify important differences between zinc sites that are directly involved in catalysis and those that play a structural role. Coordination angles in the zinc primary coordination sphere are compared with ideal values for each coordination geometry, and zinc coordination distances are compared with those in small zinc complexes from the Cambridge Structural Database as a guide of expected trends. We find that distances and angles in the primary coordination sphere are in general close to the expected (or ideal) values. Deviations occur primarily for oxygen coordinating atoms and are found to be mainly due to H-bonding of the oxygen coordinating ligand to protein residues, bidentate binding arrangements, and multi-zinc sites. We find that H-bonding of oxygen containing residues (or water) to zinc bound histidines is almost universal in our dataset and defines the elec-His-Zn motif. Analysis of the stereochemistry shows that carboxyl elec-His-Zn motifs are geometrically rigid, while water elec-His-Zn motifs show the most geometrical variation. As catalytic motifs have a higher proportion of carboxyl elec atoms than structural motifs, they provide a more rigid framework for zinc binding. This is understood biologically, as a small distortion in the zinc position in an enzyme can have serious consequences on the enzymatic reaction. We also analyze the sequence pattern of the zinc ligands and residues that provide elecs, and identify conserved hydrophobic residues in the endopeptidases that also appear to contribute to stabilizing the catalytic zinc site. A zinc binding template in protein crystal structures is derived from these observations.

Full Text

The Full Text of this article is available as a PDF (8.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Argos P., Garavito R. M., Eventoff W., Rossmann M. G., Brändén C. I. Similarities in active center geometries of zinc-containing enzymes, proteases and dehydrogenases. J Mol Biol. 1978 Dec 5;126(2):141–158. doi: 10.1016/0022-2836(78)90356-x. [DOI] [PubMed] [Google Scholar]
  2. Bairoch A., Bucher P., Hofmann K. The PROSITE database, its status in 1997. Nucleic Acids Res. 1997 Jan 1;25(1):217–221. doi: 10.1093/nar/25.1.217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baker E. N., Blundell T. L., Cutfield J. F., Cutfield S. M., Dodson E. J., Dodson G. G., Hodgkin D. M., Hubbard R. E., Isaacs N. W., Reynolds C. D. The structure of 2Zn pig insulin crystals at 1.5 A resolution. Philos Trans R Soc Lond B Biol Sci. 1988 Jul 6;319(1195):369–456. doi: 10.1098/rstb.1988.0058. [DOI] [PubMed] [Google Scholar]
  4. Baumann U., Wu S., Flaherty K. M., McKay D. B. Three-dimensional structure of the alkaline protease of Pseudomonas aeruginosa: a two-domain protein with a calcium binding parallel beta roll motif. EMBO J. 1993 Sep;12(9):3357–3364. doi: 10.1002/j.1460-2075.1993.tb06009.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Berg J. M., Godwin H. A. Lessons from zinc-binding peptides. Annu Rev Biophys Biomol Struct. 1997;26:357–371. doi: 10.1146/annurev.biophys.26.1.357. [DOI] [PubMed] [Google Scholar]
  6. Berg J. M., Shi Y. The galvanization of biology: a growing appreciation for the roles of zinc. Science. 1996 Feb 23;271(5252):1081–1085. doi: 10.1126/science.271.5252.1081. [DOI] [PubMed] [Google Scholar]
  7. Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
  8. Blundell T. L., Pitts J. E., Tickle I. J., Wood S. P., Wu C. W. X-ray analysis (1. 4-A resolution) of avian pancreatic polypeptide: Small globular protein hormone. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4175–4179. doi: 10.1073/pnas.78.7.4175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bode W., Gomis-Rüth F. X., Huber R., Zwilling R., Stöcker W. Structure of astacin and implications for activation of astacins and zinc-ligation of collagenases. Nature. 1992 Jul 9;358(6382):164–167. doi: 10.1038/358164a0. [DOI] [PubMed] [Google Scholar]
  10. Bode W., Reinemer P., Huber R., Kleine T., Schnierer S., Tschesche H. The X-ray crystal structure of the catalytic domain of human neutrophil collagenase inhibited by a substrate analogue reveals the essentials for catalysis and specificity. EMBO J. 1994 Mar 15;13(6):1263–1269. doi: 10.1002/j.1460-2075.1994.tb06378.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Botos I., Scapozza L., Zhang D., Liotta L. A., Meyer E. F. Batimastat, a potent matrix mealloproteinase inhibitor, exhibits an unexpected mode of binding. Proc Natl Acad Sci U S A. 1996 Apr 2;93(7):2749–2754. doi: 10.1073/pnas.93.7.2749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Bouckaert J., Poortmans F., Wyns L., Loris R. Sequential structural changes upon zinc and calcium binding to metal-free concanavalin A. J Biol Chem. 1996 Jul 5;271(27):16144–16150. doi: 10.1074/jbc.271.27.16144. [DOI] [PubMed] [Google Scholar]
  13. Browner M. F., Smith W. W., Castelhano A. L. Matrilysin-inhibitor complexes: common themes among metalloproteases. Biochemistry. 1995 May 23;34(20):6602–6610. doi: 10.1021/bi00020a004. [DOI] [PubMed] [Google Scholar]
  14. Burmeister W. P., Cottaz S., Driguez H., Iori R., Palmieri S., Henrissat B. The crystal structures of Sinapis alba myrosinase and a covalent glycosyl-enzyme intermediate provide insights into the substrate recognition and active-site machinery of an S-glycosidase. Structure. 1997 May 15;5(5):663–675. doi: 10.1016/s0969-2126(97)00221-9. [DOI] [PubMed] [Google Scholar]
  15. Carrell A. B., Shimoni L., Carrell C. J., Bock C. W., Murray-Rust P., Glusker J. P. The stereochemistry of the recognition of nitrogen-containing heterocycles by hydrogen bonding and by metal ions. Receptor. 1993 Spring;3(1):57–76. [PubMed] [Google Scholar]
  16. Carver J. A., Bradbury J. H. Assignment of 1H NMR resonances of histidine and other aromatic residues in met-, cyano-, oxy-, and (carbon monoxy)myoglobins. Biochemistry. 1984 Oct 9;23(21):4890–4905. doi: 10.1021/bi00316a012. [DOI] [PubMed] [Google Scholar]
  17. Chakrabarti P. Geometry of interaction of metal ions with histidine residues in protein structures. Protein Eng. 1990 Oct;4(1):57–63. doi: 10.1093/protein/4.1.57. [DOI] [PubMed] [Google Scholar]
  18. Chevrier B., Schalk C., D'Orchymont H., Rondeau J. M., Moras D., Tarnus C. Crystal structure of Aeromonas proteolytica aminopeptidase: a prototypical member of the co-catalytic zinc enzyme family. Structure. 1994 Apr 15;2(4):283–291. doi: 10.1016/s0969-2126(00)00030-7. [DOI] [PubMed] [Google Scholar]
  19. Cho H., Ramaswamy S., Plapp B. V. Flexibility of liver alcohol dehydrogenase in stereoselective binding of 3-butylthiolane 1-oxides. Biochemistry. 1997 Jan 14;36(2):382–389. doi: 10.1021/bi9624604. [DOI] [PubMed] [Google Scholar]
  20. Christianson D. W., Alexander R. S. Another catalytic triad? Nature. 1990 Jul 19;346(6281):225–225. doi: 10.1038/346225b0. [DOI] [PubMed] [Google Scholar]
  21. Christianson D. W. Structural biology of zinc. Adv Protein Chem. 1991;42:281–355. doi: 10.1016/s0065-3233(08)60538-0. [DOI] [PubMed] [Google Scholar]
  22. Cleasby A., Wonacott A., Skarzynski T., Hubbard R. E., Davies G. J., Proudfoot A. E., Bernard A. R., Payton M. A., Wells T. N. The x-ray crystal structure of phosphomannose isomerase from Candida albicans at 1.7 angstrom resolution. Nat Struct Biol. 1996 May;3(5):470–479. doi: 10.1038/nsb0596-470. [DOI] [PubMed] [Google Scholar]
  23. Coleman J. E. Zinc proteins: enzymes, storage proteins, transcription factors, and replication proteins. Annu Rev Biochem. 1992;61:897–946. doi: 10.1146/annurev.bi.61.070192.004341. [DOI] [PubMed] [Google Scholar]
  24. Concha N. O., Rasmussen B. A., Bush K., Herzberg O. Crystal structure of the wide-spectrum binuclear zinc beta-lactamase from Bacteroides fragilis. Structure. 1996 Jul 15;4(7):823–836. doi: 10.1016/s0969-2126(96)00089-5. [DOI] [PubMed] [Google Scholar]
  25. Dauter Z., Wilson K. S., Sieker L. C., Moulis J. M., Meyer J. Zinc- and iron-rubredoxins from Clostridium pasteurianum at atomic resolution: a high-precision model of a ZnS4 coordination unit in a protein. Proc Natl Acad Sci U S A. 1996 Aug 20;93(17):8836–8840. doi: 10.1073/pnas.93.17.8836. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Derewenda U., Derewenda Z., Dodson E. J., Dodson G. G., Reynolds C. D., Smith G. D., Sparks C., Swenson D. Phenol stabilizes more helix in a new symmetrical zinc insulin hexamer. Nature. 1989 Apr 13;338(6216):594–596. doi: 10.1038/338594a0. [DOI] [PubMed] [Google Scholar]
  27. Djinović Carugo K., Battistoni A., Carrì M. T., Polticelli F., Desideri A., Rotilio G., Coda A., Wilson K. S., Bolognesi M. Three-dimensional structure of Xenopus laevis Cu,Zn superoxide dismutase b determined by X-ray crystallography at 1.5 A resolution. Acta Crystallogr D Biol Crystallogr. 1996 Jan 1;52(Pt 1):176–188. doi: 10.1107/S0907444995007608. [DOI] [PubMed] [Google Scholar]
  28. Dreyer M. K., Schulz G. E. Refined high-resolution structure of the metal-ion dependent L-fuculose-1-phosphate aldolase (class II) from Escherichia coli. Acta Crystallogr D Biol Crystallogr. 1996 Nov 1;52(Pt 6):1082–1091. doi: 10.1107/S0907444996009146. [DOI] [PubMed] [Google Scholar]
  29. Elrod-Erickson M., Rould M. A., Nekludova L., Pabo C. O. Zif268 protein-DNA complex refined at 1.6 A: a model system for understanding zinc finger-DNA interactions. Structure. 1996 Oct 15;4(10):1171–1180. doi: 10.1016/s0969-2126(96)00125-6. [DOI] [PubMed] [Google Scholar]
  30. Eriksson A. E., Jones T. A., Liljas A. Refined structure of human carbonic anhydrase II at 2.0 A resolution. Proteins. 1988;4(4):274–282. doi: 10.1002/prot.340040406. [DOI] [PubMed] [Google Scholar]
  31. Ghuysen J. M., Lamotte-Brasseur J., Joris B., Shockman G. D. Binding site-shaped repeated sequences of bacterial wall peptidoglycan hydrolases. FEBS Lett. 1994 Mar 28;342(1):23–28. doi: 10.1016/0014-5793(94)80577-6. [DOI] [PubMed] [Google Scholar]
  32. Glusker J. P. Structural aspects of metal liganding to functional groups in proteins. Adv Protein Chem. 1991;42:1–76. doi: 10.1016/s0065-3233(08)60534-3. [DOI] [PubMed] [Google Scholar]
  33. Gooley P. R., O'Connell J. F., Marcy A. I., Cuca G. C., Salowe S. P., Bush B. L., Hermes J. D., Esser C. K., Hagmann W. K., Springer J. P. The NMR structure of the inhibited catalytic domain of human stromelysin-1. Nat Struct Biol. 1994 Feb;1(2):111–118. doi: 10.1038/nsb0294-111. [DOI] [PubMed] [Google Scholar]
  34. Grams F., Reinemer P., Powers J. C., Kleine T., Pieper M., Tschesche H., Huber R., Bode W. X-ray structures of human neutrophil collagenase complexed with peptide hydroxamate and peptide thiol inhibitors. Implications for substrate binding and rational drug design. Eur J Biochem. 1995 Mar 15;228(3):830–841. doi: 10.1111/j.1432-1033.1995.tb20329.x. [DOI] [PubMed] [Google Scholar]
  35. Gregory D. S., Martin A. C., Cheetham J. C., Rees A. R. The prediction and characterization of metal binding sites in proteins. Protein Eng. 1993 Jan;6(1):29–35. doi: 10.1093/protein/6.1.29. [DOI] [PubMed] [Google Scholar]
  36. Hall T. M., Porter J. A., Beachy P. A., Leahy D. J. A potential catalytic site revealed by the 1.7-A crystal structure of the amino-terminal signalling domain of Sonic hedgehog. Nature. 1995 Nov 9;378(6553):212–216. doi: 10.1038/378212a0. [DOI] [PubMed] [Google Scholar]
  37. Hellinga H. W., Richards F. M. Construction of new ligand binding sites in proteins of known structure. I. Computer-aided modeling of sites with pre-defined geometry. J Mol Biol. 1991 Dec 5;222(3):763–785. doi: 10.1016/0022-2836(91)90510-d. [DOI] [PubMed] [Google Scholar]
  38. Holden H. M., Tronrud D. E., Monzingo A. F., Weaver L. H., Matthews B. W. Slow- and fast-binding inhibitors of thermolysin display different modes of binding: crystallographic analysis of extended phosphonamidate transition-state analogues. Biochemistry. 1987 Dec 29;26(26):8542–8553. doi: 10.1021/bi00400a008. [DOI] [PubMed] [Google Scholar]
  39. Holland D. R., Tronrud D. E., Pley H. W., Flaherty K. M., Stark W., Jansonius J. N., McKay D. B., Matthews B. W. Structural comparison suggests that thermolysin and related neutral proteases undergo hinge-bending motion during catalysis. Biochemistry. 1992 Nov 24;31(46):11310–11316. doi: 10.1021/bi00161a008. [DOI] [PubMed] [Google Scholar]
  40. Holmes M. A., Matthews B. W. Structure of thermolysin refined at 1.6 A resolution. J Mol Biol. 1982 Oct 5;160(4):623–639. doi: 10.1016/0022-2836(82)90319-9. [DOI] [PubMed] [Google Scholar]
  41. Hurley T. D., Bosron W. F., Stone C. L., Amzel L. M. Structures of three human beta alcohol dehydrogenase variants. Correlations with their functional differences. J Mol Biol. 1994 Jun 10;239(3):415–429. doi: 10.1006/jmbi.1994.1382. [DOI] [PubMed] [Google Scholar]
  42. Håkansson K., Wehnert A. Structure of cobalt carbonic anhydrase complexed with bicarbonate. J Mol Biol. 1992 Dec 20;228(4):1212–1218. doi: 10.1016/0022-2836(92)90327-g. [DOI] [PubMed] [Google Scholar]
  43. Kim E. E., Wyckoff H. W. Reaction mechanism of alkaline phosphatase based on crystal structures. Two-metal ion catalysis. J Mol Biol. 1991 Mar 20;218(2):449–464. doi: 10.1016/0022-2836(91)90724-k. [DOI] [PubMed] [Google Scholar]
  44. Kurisu G., Kinoshita T., Sugimoto A., Nagara A., Kai Y., Kasai N., Harada S. Structure of the zinc endoprotease from Streptomyces caespitosus. J Biochem. 1997 Feb;121(2):304–308. doi: 10.1093/oxfordjournals.jbchem.a021587. [DOI] [PubMed] [Google Scholar]
  45. Liljas A., Håkansson K., Jonsson B. H., Xue Y. Inhibition and catalysis of carbonic anhydrase. Recent crystallographic analyses. Eur J Biochem. 1994 Jan 15;219(1-2):1–10. doi: 10.1007/978-3-642-79502-2_1. [DOI] [PubMed] [Google Scholar]
  46. Lippard S. J., Burger A. R., Ugurbil K., Pantoliano M. W., Valentine J. S. Nuclear magnetic resonance and chemical modification studies of bovine erythrocyte superoxide dismutase: evidence for zinc-promoted organization of the active site structure. Biochemistry. 1977 Mar 22;16(6):1136–1141. doi: 10.1021/bi00625a017. [DOI] [PubMed] [Google Scholar]
  47. Lipscomb William N., Sträter Norbert. Recent Advances in Zinc Enzymology. Chem Rev. 1996 Nov 7;96(7):2375–2434. doi: 10.1021/cr950042j. [DOI] [PubMed] [Google Scholar]
  48. Lovejoy B., Hassell A. M., Luther M. A., Weigl D., Jordan S. R. Crystal structures of recombinant 19-kDa human fibroblast collagenase complexed to itself. Biochemistry. 1994 Jul 12;33(27):8207–8217. doi: 10.1021/bi00193a006. [DOI] [PubMed] [Google Scholar]
  49. McGregor M. J., Islam S. A., Sternberg M. J. Analysis of the relationship between side-chain conformation and secondary structure in globular proteins. J Mol Biol. 1987 Nov 20;198(2):295–310. doi: 10.1016/0022-2836(87)90314-7. [DOI] [PubMed] [Google Scholar]
  50. Murzin A. G., Brenner S. E., Hubbard T., Chothia C. SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol. 1995 Apr 7;247(4):536–540. doi: 10.1006/jmbi.1995.0159. [DOI] [PubMed] [Google Scholar]
  51. Papageorgiou A. C., Acharya K. R., Shapiro R., Passalacqua E. F., Brehm R. D., Tranter H. S. Crystal structure of the superantigen enterotoxin C2 from Staphylococcus aureus reveals a zinc-binding site. Structure. 1995 Aug 15;3(8):769–779. doi: 10.1016/s0969-2126(01)00212-x. [DOI] [PubMed] [Google Scholar]
  52. Perutz M. F., Gronenborn A. M., Clore G. M., Fogg J. H., Shih D. T. The pKa values of two histidine residues in human haemoglobin, the Bohr effect, and the dipole moments of alpha-helices. J Mol Biol. 1985 Jun 5;183(3):491–498. doi: 10.1016/0022-2836(85)90016-6. [DOI] [PubMed] [Google Scholar]
  53. Ramaswamy S., Eklund H., Plapp B. V. Structures of horse liver alcohol dehydrogenase complexed with NAD+ and substituted benzyl alcohols. Biochemistry. 1994 May 3;33(17):5230–5237. doi: 10.1021/bi00183a028. [DOI] [PubMed] [Google Scholar]
  54. Regan L. Protein design: novel metal-binding sites. Trends Biochem Sci. 1995 Jul;20(7):280–285. doi: 10.1016/s0968-0004(00)89044-1. [DOI] [PubMed] [Google Scholar]
  55. Ren J., Stuart D. I., Acharya K. R. Alpha-lactalbumin possesses a distinct zinc binding site. J Biol Chem. 1993 Sep 15;268(26):19292–19298. [PubMed] [Google Scholar]
  56. Romier C., Reuter K., Suck D., Ficner R. Crystal structure of tRNA-guanine transglycosylase: RNA modification by base exchange. EMBO J. 1996 Jun 3;15(11):2850–2857. [PMC free article] [PubMed] [Google Scholar]
  57. Smith G. D., Swenson D. C., Dodson E. J., Dodson G. G., Reynolds C. D. Structural stability in the 4-zinc human insulin hexamer. Proc Natl Acad Sci U S A. 1984 Nov;81(22):7093–7097. doi: 10.1073/pnas.81.22.7093. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Spurlino J. C., Smallwood A. M., Carlton D. D., Banks T. M., Vavra K. J., Johnson J. S., Cook E. R., Falvo J., Wahl R. C., Pulvino T. A. 1.56 A structure of mature truncated human fibroblast collagenase. Proteins. 1994 Jun;19(2):98–109. doi: 10.1002/prot.340190203. [DOI] [PubMed] [Google Scholar]
  59. Sträter N., Lipscomb W. N. Two-metal ion mechanism of bovine lens leucine aminopeptidase: active site solvent structure and binding mode of L-leucinal, a gem-diolate transition state analogue, by X-ray crystallography. Biochemistry. 1995 Nov 14;34(45):14792–14800. doi: 10.1021/bi00045a021. [DOI] [PubMed] [Google Scholar]
  60. Stöcker W., Grams F., Baumann U., Reinemer P., Gomis-Rüth F. X., McKay D. B., Bode W. The metzincins--topological and sequential relations between the astacins, adamalysins, serralysins, and matrixins (collagenases) define a superfamily of zinc-peptidases. Protein Sci. 1995 May;4(5):823–840. doi: 10.1002/pro.5560040502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Thayer M. M., Flaherty K. M., McKay D. B. Three-dimensional structure of the elastase of Pseudomonas aeruginosa at 1.5-A resolution. J Biol Chem. 1991 Feb 15;266(5):2864–2871. doi: 10.2210/pdb1ezm/pdb. [DOI] [PubMed] [Google Scholar]
  62. Vallee B. L., Auld D. S. New perspective on zinc biochemistry: cocatalytic sites in multi-zinc enzymes. Biochemistry. 1993 Jul 6;32(26):6493–6500. doi: 10.1021/bi00077a001. [DOI] [PubMed] [Google Scholar]
  63. Xie X., Kokubo T., Cohen S. L., Mirza U. A., Hoffmann A., Chait B. T., Roeder R. G., Nakatani Y., Burley S. K. Structural similarity between TAFs and the heterotetrameric core of the histone octamer. Nature. 1996 Mar 28;380(6572):316–322. doi: 10.1038/380316a0. [DOI] [PubMed] [Google Scholar]
  64. Zhang D., Botos I., Gomis-Rüth F. X., Doll R., Blood C., Njoroge F. G., Fox J. W., Bode W., Meyer E. F. Structural interaction of natural and synthetic inhibitors with the venom metalloproteinase, atrolysin C (form d). Proc Natl Acad Sci U S A. 1994 Aug 30;91(18):8447–8451. doi: 10.1073/pnas.91.18.8447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Zhang G., Kazanietz M. G., Blumberg P. M., Hurley J. H. Crystal structure of the cys2 activator-binding domain of protein kinase C delta in complex with phorbol ester. Cell. 1995 Jun 16;81(6):917–924. doi: 10.1016/0092-8674(95)90011-x. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES