Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1998 Aug;7(8):1821–1828. doi: 10.1002/pro.5560070818

Turn scanning by site-directed mutagenesis: application to the protein folding problem using the intestinal fatty acid binding protein.

K Kim 1, C Frieden 1
PMCID: PMC2144079  PMID: 10082380

Abstract

We have systematically mutated residues located in turns between beta-strands of the intestinal fatty acid binding protein (IFABP), and a glycine in a half turn, to valine and have examined the stability, refolding rate constants and ligand dissociation constants for each mutant protein. IFABP is an almost all beta-sheet protein exhibiting a topology comprised of two five-stranded sheets surrounding a large cavity into which the fatty acid ligand binds. A glycine residue is located in seven of the eight turns between the antiparallel beta-strands and another in a half turn of a strand connecting the front and back sheets. Mutations in any of the three turns connecting the last four C-terminal strands slow the folding and decrease stability with the mutation between the last two strands slowing folding dramatically. These data suggest that interactions between the last four C-terminal strands are highly cooperative, perhaps triggered by an initial hydrophobic collapse. We suggest that this trigger is collapse of the highly hydrophobic cluster of amino acids in the D and E strands, a region previously shown to also affect the last stage of the folding process (Kim et al., 1997). Changing the glycine in the strand between the front and back sheets also results in a unstable, slow folding protein perhaps disrupting the D-E strand interactions. For most of the other turn mutations there was no apparent correlation between stability and refolding rate constants. In some turns, the interaction between strands, rather than the turn type, appears to be critical for folding while in others, turn formation itself appears to be a rate limiting step. Although there is no simple correlation between turn formation and folding kinetics, we propose that turn scanning by mutagenesis will be a useful tool for issues related to protein folding.

Full Text

The Full Text of this article is available as a PDF (1.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Banaszak L., Winter N., Xu Z., Bernlohr D. A., Cowan S., Jones T. A. Lipid-binding proteins: a family of fatty acid and retinoid transport proteins. Adv Protein Chem. 1994;45:89–151. doi: 10.1016/s0065-3233(08)60639-7. [DOI] [PubMed] [Google Scholar]
  2. Chou P. Y., Fasman G. D. Beta-turns in proteins. J Mol Biol. 1977 Sep 15;115(2):135–175. doi: 10.1016/0022-2836(77)90094-8. [DOI] [PubMed] [Google Scholar]
  3. Cistola D. P., Kim K., Rogl H., Frieden C. Fatty acid interactions with a helix-less variant of intestinal fatty acid-binding protein. Biochemistry. 1996 Jun 11;35(23):7559–7565. doi: 10.1021/bi952912x. [DOI] [PubMed] [Google Scholar]
  4. Clark P. L., Liu Z. P., Rizo J., Gierasch L. M. Cavity formation before stable hydrogen bonding in the folding of a beta-clam protein. Nat Struct Biol. 1997 Nov;4(11):883–886. doi: 10.1038/nsb1197-883. [DOI] [PubMed] [Google Scholar]
  5. Garrett J. B., Mullins L. S., Raushel F. M. Are turns required for the folding of ribonuclease T1? Protein Sci. 1996 Feb;5(2):204–211. doi: 10.1002/pro.5560050203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gu H., Kim D., Baker D. Contrasting roles for symmetrically disposed beta-turns in the folding of a small protein. J Mol Biol. 1997 Dec 12;274(4):588–596. doi: 10.1006/jmbi.1997.1374. [DOI] [PubMed] [Google Scholar]
  7. Hodsdon M. E., Cistola D. P. Discrete backbone disorder in the nuclear magnetic resonance structure of apo intestinal fatty acid-binding protein: implications for the mechanism of ligand entry. Biochemistry. 1997 Feb 11;36(6):1450–1460. doi: 10.1021/bi961890r. [DOI] [PubMed] [Google Scholar]
  8. Hodsdon M. E., Cistola D. P. Ligand binding alters the backbone mobility of intestinal fatty acid-binding protein as monitored by 15N NMR relaxation and 1H exchange. Biochemistry. 1997 Feb 25;36(8):2278–2290. doi: 10.1021/bi962018l. [DOI] [PubMed] [Google Scholar]
  9. Hodsdon M. E., Ponder J. W., Cistola D. P. The NMR solution structure of intestinal fatty acid-binding protein complexed with palmitate: application of a novel distance geometry algorithm. J Mol Biol. 1996 Dec 6;264(3):585–602. doi: 10.1006/jmbi.1996.0663. [DOI] [PubMed] [Google Scholar]
  10. Hoeltzli S. D., Frieden C. Stopped-flow NMR spectroscopy: real-time unfolding studies of 6-19F-tryptophan-labeled Escherichia coli dihydrofolate reductase. Proc Natl Acad Sci U S A. 1995 Sep 26;92(20):9318–9322. doi: 10.1073/pnas.92.20.9318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hynes T. R., Kautz R. A., Goodman M. A., Gill J. F., Fox R. O. Transfer of a beta-turn structure to a new protein context. Nature. 1989 May 4;339(6219):73–76. doi: 10.1038/339073a0. [DOI] [PubMed] [Google Scholar]
  12. Kim K., Cistola D. P., Frieden C. Intestinal fatty acid-binding protein: the structure and stability of a helix-less variant. Biochemistry. 1996 Jun 11;35(23):7553–7558. doi: 10.1021/bi9529115. [DOI] [PubMed] [Google Scholar]
  13. Kim K., Ramanathan R., Frieden C. Intestinal fatty acid binding protein: a specific residue in one turn appears to stabilize the native structure and be responsible for slow refolding. Protein Sci. 1997 Feb;6(2):364–372. doi: 10.1002/pro.5560060212. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kurian E., Kirk W. R., Prendergast F. G. Affinity of fatty acid for (r)rat intestinal fatty acid binding protein:further examination. Biochemistry. 1996 Mar 26;35(12):3865–3874. doi: 10.1021/bi952589y. [DOI] [PubMed] [Google Scholar]
  15. Minor D. L., Jr, Kim P. S. Context is a major determinant of beta-sheet propensity. Nature. 1994 Sep 15;371(6494):264–267. doi: 10.1038/371264a0. [DOI] [PubMed] [Google Scholar]
  16. Minor D. L., Jr, Kim P. S. Measurement of the beta-sheet-forming propensities of amino acids. Nature. 1994 Feb 17;367(6464):660–663. doi: 10.1038/367660a0. [DOI] [PubMed] [Google Scholar]
  17. Plaxco K. W., Simons K. T., Baker D. Contact order, transition state placement and the refolding rates of single domain proteins. J Mol Biol. 1998 Apr 10;277(4):985–994. doi: 10.1006/jmbi.1998.1645. [DOI] [PubMed] [Google Scholar]
  18. Ramírez-Alvarado M., Blanco F. J., Serrano L. De novo design and structural analysis of a model beta-hairpin peptide system. Nat Struct Biol. 1996 Jul;3(7):604–612. doi: 10.1038/nsb0796-604. [DOI] [PubMed] [Google Scholar]
  19. Richieri G. V., Ogata R. T., Kleinfeld A. M. Kinetics of fatty acid interactions with fatty acid binding proteins from adipocyte, heart, and intestine. J Biol Chem. 1996 May 10;271(19):11291–11300. doi: 10.1074/jbc.271.19.11291. [DOI] [PubMed] [Google Scholar]
  20. Ropson I. J., Frieden C. Dynamic NMR spectral analysis and protein folding: identification of a highly populated folding intermediate of rat intestinal fatty acid-binding protein by 19F NMR. Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):7222–7226. doi: 10.1073/pnas.89.15.7222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ropson I. J., Gordon J. I., Frieden C. Folding of a predominantly beta-structure protein: rat intestinal fatty acid binding protein. Biochemistry. 1990 Oct 16;29(41):9591–9599. doi: 10.1021/bi00493a013. [DOI] [PubMed] [Google Scholar]
  22. Rose G. D., Gierasch L. M., Smith J. A. Turns in peptides and proteins. Adv Protein Chem. 1985;37:1–109. doi: 10.1016/s0065-3233(08)60063-7. [DOI] [PubMed] [Google Scholar]
  23. Sacchettini J. C., Gordon J. I. Rat intestinal fatty acid binding protein. A model system for analyzing the forces that can bind fatty acids to proteins. J Biol Chem. 1993 Sep 5;268(25):18399–18402. [PubMed] [Google Scholar]
  24. Sacchettini J. C., Scapin G., Gopaul D., Gordon J. I. Refinement of the structure of Escherichia coli-derived rat intestinal fatty acid binding protein with bound oleate to 1.75-A resolution. Correlation with the structures of the apoprotein and the protein with bound palmitate. J Biol Chem. 1992 Nov 25;267(33):23534–23545. [PubMed] [Google Scholar]
  25. Santoro M. M., Bolen D. W. Unfolding free energy changes determined by the linear extrapolation method. 1. Unfolding of phenylmethanesulfonyl alpha-chymotrypsin using different denaturants. Biochemistry. 1988 Oct 18;27(21):8063–8068. doi: 10.1021/bi00421a014. [DOI] [PubMed] [Google Scholar]
  26. Scapin G., Gordon J. I., Sacchettini J. C. Refinement of the structure of recombinant rat intestinal fatty acid-binding apoprotein at 1.2-A resolution. J Biol Chem. 1992 Feb 25;267(6):4253–4269. doi: 10.2210/pdb1ifc/pdb. [DOI] [PubMed] [Google Scholar]
  27. Serrano L., Matouschek A., Fersht A. R. The folding of an enzyme. III. Structure of the transition state for unfolding of barnase analysed by a protein engineering procedure. J Mol Biol. 1992 Apr 5;224(3):805–818. doi: 10.1016/0022-2836(92)90563-y. [DOI] [PubMed] [Google Scholar]
  28. Sibanda B. L., Thornton J. M. Conformation of beta hairpins in protein structures: classification and diversity in homologous structures. Methods Enzymol. 1991;202:59–82. doi: 10.1016/0076-6879(91)02007-v. [DOI] [PubMed] [Google Scholar]
  29. Smith C. K., Regan L. Guidelines for protein design: the energetics of beta sheet side chain interactions. Science. 1995 Nov 10;270(5238):980–982. doi: 10.1126/science.270.5238.980. [DOI] [PubMed] [Google Scholar]
  30. Smith C. K., Withka J. M., Regan L. A thermodynamic scale for the beta-sheet forming tendencies of the amino acids. Biochemistry. 1994 May 10;33(18):5510–5517. doi: 10.1021/bi00184a020. [DOI] [PubMed] [Google Scholar]
  31. Srinivasan R., Rose G. D. LINUS: a hierarchic procedure to predict the fold of a protein. Proteins. 1995 Jun;22(2):81–99. doi: 10.1002/prot.340220202. [DOI] [PubMed] [Google Scholar]
  32. Strickland E. H. Aromatic contributions to circular dichroism spectra of proteins. CRC Crit Rev Biochem. 1974 Jan;2(1):113–175. doi: 10.3109/10409237409105445. [DOI] [PubMed] [Google Scholar]
  33. Stroup A. N., Gierasch L. M. Reduced tendency to form a beta turn in peptides from the P22 tailspike protein correlates with a temperature-sensitive folding defect. Biochemistry. 1990 Oct 23;29(42):9765–9771. doi: 10.1021/bi00494a002. [DOI] [PubMed] [Google Scholar]
  34. Zhou H. X., Hoess R. H., DeGrado W. F. In vitro evolution of thermodynamically stable turns. Nat Struct Biol. 1996 May;3(5):446–451. doi: 10.1038/nsb0596-446. [DOI] [PubMed] [Google Scholar]
  35. de Alba E., Jiménez M. A., Rico M., Nieto J. L. Conformational investigation of designed short linear peptides able to fold into beta-hairpin structures in aqueous solution. Fold Des. 1996;1(2):133–144. doi: 10.1016/s1359-0278(96)00022-3. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES