Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1998 Aug;7(8):1738–1749. doi: 10.1002/pro.5560070808

Role of the 6-20 disulfide bridge in the structure and activity of epidermal growth factor.

K J Barnham 1, A M Torres 1, D Alewood 1, P F Alewood 1, T Domagala 1, E C Nice 1, R S Norton 1
PMCID: PMC2144085  PMID: 10082370

Abstract

Two synthetic analogues of murine epidermal growth factor, [Abu6, 20] mEGF4-48 (where Abu denotes amino-butyric acid) and [G1, M3, K21, H40] mEGF1-48, have been investigated by NMR spectroscopy. [Abu6, 20] mEGF4-48 was designed to determine the contribution of the 6-20 disulfide bridge to the structure and function of mEGF. The overall structure of this analogue was similar to that of native mEGF, indicating that the loss of the 6-20 disulfide bridge did not affect the global fold of the molecule. Significant structural differences were observed near the N-terminus, however, with the direction of the polypeptide chain between residues four and nine being altered such that these residues were now located on the opposite face of the main beta-sheet from their position in native mEGF. Thermal denaturation experiments also showed that the structure of [Abu6, 20] mEGF4-48 was less stable than that of mEGF. Removal of this disulfide bridge resulted in a significant loss of both mitogenic activity in Balb/c 3T3 cells and receptor binding on A431 cells compared with native mEGF and mEGF4-48, implying that the structural changes in [Abu6, 20] mEGF4-48, although limited to the N-terminus, were sufficient to interfere with receptor binding. The loss of binding affinity probably arose mainly from steric interactions of the dislocated N-terminal region with part of the receptor binding surface of EGF. [G1, M3, K21, H40] mEGF1-48 was also synthesized in order to compare the synthetic polypeptide with the corresponding product of recombinant expression. Its mitogenic activity in Balb/c 3T3 cells was similar to that of native mEGF and analysis of its 1H chemical shifts suggested that its structure was also very similar to native.

Full Text

The Full Text of this article is available as a PDF (6.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arriaga Y. L., Harville B. A., Dreyfus L. A. Contribution of individual disulfide bonds to biological action of Escherichia coli heat-stable enterotoxin B. Infect Immun. 1995 Dec;63(12):4715–4720. doi: 10.1128/iai.63.12.4715-4720.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
  3. Betz S. F. Disulfide bonds and the stability of globular proteins. Protein Sci. 1993 Oct;2(10):1551–1558. doi: 10.1002/pro.5560021002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Burgess A. W. Epidermal growth factor and transforming growth factor alpha. Br Med Bull. 1989 Apr;45(2):401–424. doi: 10.1093/oxfordjournals.bmb.a072331. [DOI] [PubMed] [Google Scholar]
  5. Burgess A. W., Lloyd C. J., Smith S., Stanley E., Walker F., Fabri L., Simpson R. J., Nice E. C. Murine epidermal growth factor: structure and function. Biochemistry. 1988 Jul 12;27(14):4977–4985. doi: 10.1021/bi00414a005. [DOI] [PubMed] [Google Scholar]
  6. Chuang L. C., Chen P. Y., Chen C., Huang T. H., Wang K. T., Chiou S. H., Wu S. H. Structural analysis of a biologically active echistatin analogue des(46-49)-[Ala8,37]-echistatin gamma with three disulfide bonds by 2D-NMR and computer graphics. Biochem Biophys Res Commun. 1996 Mar 18;220(2):246–254. doi: 10.1006/bbrc.1996.0422. [DOI] [PubMed] [Google Scholar]
  7. Cooke R. M., Wilkinson A. J., Baron M., Pastore A., Tappin M. J., Campbell I. D., Gregory H., Sheard B. The solution structure of human epidermal growth factor. 1987 May 28-Jun 3Nature. 327(6120):339–341. doi: 10.1038/327339a0. [DOI] [PubMed] [Google Scholar]
  8. Cunningham B. C., Wells J. A. Minimized proteins. Curr Opin Struct Biol. 1997 Aug;7(4):457–462. doi: 10.1016/s0959-440x(97)80107-8. [DOI] [PubMed] [Google Scholar]
  9. Defeo-Jones D., Tai J. Y., Vuocolo G. A., Wegrzyn R. J., Schofield T. L., Riemen M. W., Oliff A. Substitution of lysine for arginine at position 42 of human transforming growth factor-alpha eliminates biological activity without changing internal disulfide bonds. Mol Cell Biol. 1989 Sep;9(9):4083–4086. doi: 10.1128/mcb.9.9.4083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Doig A. J., Williams D. H. Is the hydrophobic effect stabilizing or destabilizing in proteins? The contribution of disulphide bonds to protein stability. J Mol Biol. 1991 Jan 20;217(2):389–398. doi: 10.1016/0022-2836(91)90551-g. [DOI] [PubMed] [Google Scholar]
  11. Eigenbrot C., Randal M., Kossiakoff A. A. Structural effects induced by removal of a disulfide-bridge: the X-ray structure of the C30A/C51A mutant of basic pancreatic trypsin inhibitor at 1.6 A. Protein Eng. 1990 Jul;3(7):591–598. doi: 10.1093/protein/3.7.591. [DOI] [PubMed] [Google Scholar]
  12. Groenen L. C., Nice E. C., Burgess A. W. Structure-function relationships for the EGF/TGF-alpha family of mitogens. Growth Factors. 1994;11(4):235–257. doi: 10.3109/08977199409010997. [DOI] [PubMed] [Google Scholar]
  13. Güntert P., Braun W., Wüthrich K. Efficient computation of three-dimensional protein structures in solution from nuclear magnetic resonance data using the program DIANA and the supporting programs CALIBA, HABAS and GLOMSA. J Mol Biol. 1991 Feb 5;217(3):517–530. doi: 10.1016/0022-2836(91)90754-t. [DOI] [PubMed] [Google Scholar]
  14. Güntert P., Mumenthaler C., Wüthrich K. Torsion angle dynamics for NMR structure calculation with the new program DYANA. J Mol Biol. 1997 Oct 17;273(1):283–298. doi: 10.1006/jmbi.1997.1284. [DOI] [PubMed] [Google Scholar]
  15. Harvey T. S., Wilkinson A. J., Tappin M. J., Cooke R. M., Campbell I. D. The solution structure of human transforming growth factor alpha. Eur J Biochem. 1991 Jun 15;198(3):555–562. doi: 10.1111/j.1432-1033.1991.tb16050.x. [DOI] [PubMed] [Google Scholar]
  16. Hoeprich P. D., Jr, Langton B. C., Zhang J. W., Tam J. P. Identification of immunodominant regions of transforming growth factor alpha. Implications of structure and function. J Biol Chem. 1989 Nov 15;264(32):19086–19091. [PubMed] [Google Scholar]
  17. Hommel U., Harvey T. S., Driscoll P. C., Campbell I. D. Human epidermal growth factor. High resolution solution structure and comparison with human transforming growth factor alpha. J Mol Biol. 1992 Sep 5;227(1):271–282. doi: 10.1016/0022-2836(92)90697-i. [DOI] [PubMed] [Google Scholar]
  18. Hoyt D. W., Harkins R. N., Debanne M. T., O'Connor-McCourt M., Sykes B. D. Interaction of transforming growth factor alpha with the epidermal growth factor receptor: binding kinetics and differential mobility within the bound TGF-alpha. Biochemistry. 1994 Dec 27;33(51):15283–15292. doi: 10.1021/bi00255a009. [DOI] [PubMed] [Google Scholar]
  19. Hua Q. X., Narhi L., Jia W., Arakawa T., Rosenfeld R., Hawkins N., Miller J. A., Weiss M. A. Native and non-native structure in a protein-folding intermediate: spectroscopic studies of partially reduced IGF-I and an engineered alanine model. J Mol Biol. 1996 Jun 7;259(2):297–313. doi: 10.1006/jmbi.1996.0320. [DOI] [PubMed] [Google Scholar]
  20. Hyberts S. G., Goldberg M. S., Havel T. F., Wagner G. The solution structure of eglin c based on measurements of many NOEs and coupling constants and its comparison with X-ray structures. Protein Sci. 1992 Jun;1(6):736–751. doi: 10.1002/pro.5560010606. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kohda D., Inagaki F. Three-dimensional nuclear magnetic resonance structures of mouse epidermal growth factor in acidic and physiological pH solutions. Biochemistry. 1992 Dec 1;31(47):11928–11939. doi: 10.1021/bi00162a036. [DOI] [PubMed] [Google Scholar]
  22. Le-Nguyen D., Heitz A., Chiche L., el Hajji M., Castro B. Characterization and 2D NMR study of the stable [9-21, 15-27] 2 disulfide intermediate in the folding of the 3 disulfide trypsin inhibitor EETI II. Protein Sci. 1993 Feb;2(2):165–174. doi: 10.1002/pro.5560020205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Ludvigsen S., Poulsen F. M. Positive theta-angles in proteins by nuclear magnetic resonance spectroscopy. J Biomol NMR. 1992 May;2(3):227–233. doi: 10.1007/BF01875318. [DOI] [PubMed] [Google Scholar]
  24. Manoleras N., Norton R. S. Three-dimensional structure in solution of neurotoxin III from the sea anemone Anemonia sulcata. Biochemistry. 1994 Sep 20;33(37):11051–11061. doi: 10.1021/bi00203a001. [DOI] [PubMed] [Google Scholar]
  25. Marion D., Wüthrich K. Application of phase sensitive two-dimensional correlated spectroscopy (COSY) for measurements of 1H-1H spin-spin coupling constants in proteins. Biochem Biophys Res Commun. 1983 Jun 29;113(3):967–974. doi: 10.1016/0006-291x(83)91093-8. [DOI] [PubMed] [Google Scholar]
  26. McInnes C., Hoyt D. W., Harkins R. N., Pagila R. N., Debanne M. T., O'Connor-McCourt M., Sykes B. D. NMR study of the transforming growth factor-alpha (TGF-alpha)-epidermal growth factor receptor complex. Visualization of human TGF-alpha binding determinants through nuclear Overhauser enhancement analysis. J Biol Chem. 1996 Dec 13;271(50):32204–32211. doi: 10.1074/jbc.271.50.32204. [DOI] [PubMed] [Google Scholar]
  27. Monks S. A., Pallaghy P. K., Scanlon M. J., Norton R. S. Solution structure of the cardiostimulant polypeptide anthopleurin-B and comparison with anthopleurin-A. Structure. 1995 Aug 15;3(8):791–803. doi: 10.1016/s0969-2126(01)00214-3. [DOI] [PubMed] [Google Scholar]
  28. Montelione G. T., Wüthrich K., Burgess A. W., Nice E. C., Wagner G., Gibson K. D., Scheraga H. A. Solution structure of murine epidermal growth factor determined by NMR spectroscopy and refined by energy minimization with restraints. Biochemistry. 1992 Jan 14;31(1):236–249. doi: 10.1021/bi00116a033. [DOI] [PubMed] [Google Scholar]
  29. Montelione G. T., Wüthrich K., Nice E. C., Burgess A. W., Scheraga H. A. Identification of two anti-parallel beta-sheet conformations in the solution structure of murine epidermal growth factor by proton magnetic resonance. Proc Natl Acad Sci U S A. 1986 Nov;83(22):8594–8598. doi: 10.1073/pnas.83.22.8594. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Montelione G. T., Wüthrich K., Scheraga H. A. Sequence-specific 1H NMR assignments and identification of slowly exchanging amide protons in murine epidermal growth factor. Biochemistry. 1988 Mar 22;27(6):2235–2243. doi: 10.1021/bi00406a064. [DOI] [PubMed] [Google Scholar]
  31. Nilges M., Clore G. M., Gronenborn A. M. Determination of three-dimensional structures of proteins from interproton distance data by hybrid distance geometry-dynamical simulated annealing calculations. FEBS Lett. 1988 Mar 14;229(2):317–324. doi: 10.1016/0014-5793(88)81148-7. [DOI] [PubMed] [Google Scholar]
  32. Nolde D. E., Sobol A. G., Pluzhnikov K. A., Grishin E. V., Arseniev A. S. Three-dimensional structure of ectatomin from Ectatomma tuberculatum ant venom. J Biomol NMR. 1995 Jan;5(1):1–13. doi: 10.1007/BF00227465. [DOI] [PubMed] [Google Scholar]
  33. Pallaghy P. K., Duggan B. M., Pennington M. W., Norton R. S. Three-dimensional structure in solution of the calcium channel blocker omega-conotoxin. J Mol Biol. 1993 Nov 20;234(2):405–420. doi: 10.1006/jmbi.1993.1595. [DOI] [PubMed] [Google Scholar]
  34. Pan H., Barbar E., Barany G., Woodward C. Extensive nonrandom structure in reduced and unfolded bovine pancreatic trypsin inhibitor. Biochemistry. 1995 Oct 31;34(43):13974–13981. doi: 10.1021/bi00043a002. [DOI] [PubMed] [Google Scholar]
  35. Rance M., Sørensen O. W., Bodenhausen G., Wagner G., Ernst R. R., Wüthrich K. Improved spectral resolution in cosy 1H NMR spectra of proteins via double quantum filtering. Biochem Biophys Res Commun. 1983 Dec 16;117(2):479–485. doi: 10.1016/0006-291x(83)91225-1. [DOI] [PubMed] [Google Scholar]
  36. Richardson J. S. The anatomy and taxonomy of protein structure. Adv Protein Chem. 1981;34:167–339. doi: 10.1016/s0065-3233(08)60520-3. [DOI] [PubMed] [Google Scholar]
  37. Sabatier J. M., Lecomte C., Mabrouk K., Darbon H., Oughideni R., Canarelli S., Rochat H., Martin-Eauclaire M. F., van Rietschoten J. Synthesis and characterization of leiurotoxin I analogs lacking one disulfide bridge: evidence that disulfide pairing 3-21 is not required for full toxin activity. Biochemistry. 1996 Aug 20;35(33):10641–10647. doi: 10.1021/bi960533d. [DOI] [PubMed] [Google Scholar]
  38. Savage C. R., Jr, Inagami T., Cohen S. The primary structure of epidermal growth factor. J Biol Chem. 1972 Dec 10;247(23):7612–7621. [PubMed] [Google Scholar]
  39. Schnölzer M., Alewood P., Jones A., Alewood D., Kent S. B. In situ neutralization in Boc-chemistry solid phase peptide synthesis. Rapid, high yield assembly of difficult sequences. Int J Pept Protein Res. 1992 Sep-Oct;40(3-4):180–193. doi: 10.1111/j.1399-3011.1992.tb00291.x. [DOI] [PubMed] [Google Scholar]
  40. Simpson R. J., Smith J. A., Moritz R. L., O'Hare M. J., Rudland P. S., Morrison J. R., Lloyd C. J., Grego B., Burgess A. W., Nice E. C. Rat epidermal growth factor: complete amino acid sequence. Homology with the corresponding murine and human proteins; isolation of a form truncated at both ends with full in vitro biological activity. Eur J Biochem. 1985 Dec 16;153(3):629–637. doi: 10.1111/j.1432-1033.1985.tb09346.x. [DOI] [PubMed] [Google Scholar]
  41. Song J., Gilquin B., Jamin N., Drakopoulou E., Guenneugues M., Dauplais M., Vita C., Ménez A. NMR solution structure of a two-disulfide derivative of charybdotoxin: structural evidence for conservation of scorpion toxin alpha/beta motif and its hydrophobic side chain packing. Biochemistry. 1997 Apr 1;36(13):3760–3766. doi: 10.1021/bi962720h. [DOI] [PubMed] [Google Scholar]
  42. Tam J. P., Lin Y. Z., Liu W., Wang D. X., Ke X. H., Zhang J. W. Mapping the receptor-recognition site of human transforming growth factor-alpha. Int J Pept Protein Res. 1991 Sep;38(3):204–211. doi: 10.1111/j.1399-3011.1991.tb01430.x. [DOI] [PubMed] [Google Scholar]
  43. Tejero R., Bassolino-Klimas D., Bruccoleri R. E., Montelione G. T. Simulated annealing with restrained molecular dynamics using CONGEN: energy refinement of the NMR solution structures of epidermal and type-alpha transforming growth factors. Protein Sci. 1996 Apr;5(4):578–592. doi: 10.1002/pro.5560050403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Thornton J. M. Disulphide bridges in globular proteins. J Mol Biol. 1981 Sep 15;151(2):261–287. doi: 10.1016/0022-2836(81)90515-5. [DOI] [PubMed] [Google Scholar]
  45. Wagner G., Braun W., Havel T. F., Schaumann T., Go N., Wüthrich K. Protein structures in solution by nuclear magnetic resonance and distance geometry. The polypeptide fold of the basic pancreatic trypsin inhibitor determined using two different algorithms, DISGEO and DISMAN. J Mol Biol. 1987 Aug 5;196(3):611–639. doi: 10.1016/0022-2836(87)90037-4. [DOI] [PubMed] [Google Scholar]
  46. White C. E., Hunter M. J., Meininger D. P., Garrod S., Komives E. A. The fifth epidermal growth factor-like domain of thrombomodulin does not have an epidermal growth factor-like disulfide bonding pattern. Proc Natl Acad Sci U S A. 1996 Sep 17;93(19):10177–10182. doi: 10.1073/pnas.93.19.10177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Wishart D. S., Bigam C. G., Holm A., Hodges R. S., Sykes B. D. 1H, 13C and 15N random coil NMR chemical shifts of the common amino acids. I. Investigations of nearest-neighbor effects. J Biomol NMR. 1995 Jan;5(1):67–81. doi: 10.1007/BF00227471. [DOI] [PubMed] [Google Scholar]
  48. Wishart D. S., Bigam C. G., Yao J., Abildgaard F., Dyson H. J., Oldfield E., Markley J. L., Sykes B. D. 1H, 13C and 15N chemical shift referencing in biomolecular NMR. J Biomol NMR. 1995 Sep;6(2):135–140. doi: 10.1007/BF00211777. [DOI] [PubMed] [Google Scholar]
  49. Wishart D. S., Sykes B. D., Richards F. M. The chemical shift index: a fast and simple method for the assignment of protein secondary structure through NMR spectroscopy. Biochemistry. 1992 Feb 18;31(6):1647–1651. doi: 10.1021/bi00121a010. [DOI] [PubMed] [Google Scholar]
  50. van Mierlo C. P., Darby N. J., Neuhaus D., Creighton T. E. (14-38, 30-51) double-disulphide intermediate in folding of bovine pancreatic trypsin inhibitor: a two-dimensional 1H nuclear magnetic resonance study. J Mol Biol. 1991 Nov 20;222(2):353–371. doi: 10.1016/0022-2836(91)90216-s. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES