Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1998 Aug;7(8):1671–1680. doi: 10.1002/pro.5560070802

Improving the binding affinity of an antibody using molecular modeling and site-directed mutagenesis.

C L Casipit 1, R Tal 1, V Wittman 1, P A Chavaillaz 1, K Arbuthnott 1, J A Weidanz 1, J A Jiao 1, H C Wong 1
PMCID: PMC2144089  PMID: 10082364

Abstract

Activated Factor X releases F1.2, a 271-amino acid peptide, from the amino terminus of prothrombin during blood coagulation. A nine-amino acid peptide, C9 (DSDRAIEGR), corresponding to the carboxyl terminus of F1.2 was synthesized and used to produce a monoclonal antibody, TA1 (K(D)) 1.22 x 10(-6) M). To model the TA1 antibody, we entered the sequence information of the cloned TA1 Fv into the antibody modeling program, ABM, which combines homology methods, conformational search procedures, and energy screening and has proved to be a reliable and reproducible antibody modeling method. Using a novel protein fusion procedure, we expressed the C9 peptide fused to the carboxyl terminus of the PENI repressor protein from Bacillus licheniformis in Escherichia coli. We constructed fusion proteins containing alanine substitutions for each amino acid in the C9 epitope. Binding studies, using the C9 alanine mutants and TA1, and spatial constraints predicted by the modeled TA1 binding cleft enabled us to establish a plausible conformation for C9 complexed with TA1. Furthermore, based on binding results of conservative amino acid substitutions in C9 and mutations in the antibody, we were able to refine the complex model and identify antibody mutations that would improve binding affinity.

Full Text

The Full Text of this article is available as a PDF (6.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschuh D., Dubs M. C., Weiss E., Zeder-Lutz G., Van Regenmortel M. H. Determination of kinetic constants for the interaction between a monoclonal antibody and peptides using surface plasmon resonance. Biochemistry. 1992 Jul 14;31(27):6298–6304. doi: 10.1021/bi00142a019. [DOI] [PubMed] [Google Scholar]
  2. Amit A. G., Mariuzza R. A., Phillips S. E., Poljak R. J. Three-dimensional structure of an antigen-antibody complex at 2.8 A resolution. Science. 1986 Aug 15;233(4765):747–753. doi: 10.1126/science.2426778. [DOI] [PubMed] [Google Scholar]
  3. Ban N., Escobar C., Garcia R., Hasel K., Day J., Greenwood A., McPherson A. Crystal structure of an idiotype-anti-idiotype Fab complex. Proc Natl Acad Sci U S A. 1994 Mar 1;91(5):1604–1608. doi: 10.1073/pnas.91.5.1604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bentley G. A., Boulot G., Riottot M. M., Poljak R. J. Three-dimensional structure of an idiotope-anti-idiotope complex. Nature. 1990 Nov 15;348(6298):254–257. doi: 10.1038/348254a0. [DOI] [PubMed] [Google Scholar]
  5. Braden B. C., Poljak R. J. Structural features of the reactions between antibodies and protein antigens. FASEB J. 1995 Jan;9(1):9–16. doi: 10.1096/fasebj.9.1.7821765. [DOI] [PubMed] [Google Scholar]
  6. Bruccoleri R. E., Haber E., Novotný J. Structure of antibody hypervariable loops reproduced by a conformational search algorithm. Nature. 1988 Oct 6;335(6190):564–568. doi: 10.1038/335564a0. [DOI] [PubMed] [Google Scholar]
  7. Brünger A. T., Leahy D. J., Hynes T. R., Fox R. O. 2.9 A resolution structure of an anti-dinitrophenyl-spin-label monoclonal antibody Fab fragment with bound hapten. J Mol Biol. 1991 Sep 5;221(1):239–256. doi: 10.1016/0022-2836(91)80217-i. [DOI] [PubMed] [Google Scholar]
  8. Dyson H. J., Wright P. E. Antigenic peptides. FASEB J. 1995 Jan;9(1):37–42. doi: 10.1096/fasebj.9.1.7821757. [DOI] [PubMed] [Google Scholar]
  9. Evans S. V., Rose D. R., To R., Young N. M., Bundle D. R. Exploring the mimicry of polysaccharide antigens by anti-idiotypic antibodies. The crystallization, molecular replacement, and refinement to 2.8 A resolution of an idiotope-anti-idiotope Fab complex and of the unliganded anti-idiotope Fab. J Mol Biol. 1994 Sep 2;241(5):691–705. doi: 10.1006/jmbi.1994.1544. [DOI] [PubMed] [Google Scholar]
  10. Herron J. N., He X. M., Ballard D. W., Blier P. R., Pace P. E., Bothwell A. L., Voss E. W., Jr, Edmundson A. B. An autoantibody to single-stranded DNA: comparison of the three-dimensional structures of the unliganded Fab and a deoxynucleotide-Fab complex. Proteins. 1991;11(3):159–175. doi: 10.1002/prot.340110302. [DOI] [PubMed] [Google Scholar]
  11. Horton R. M., Hunt H. D., Ho S. N., Pullen J. K., Pease L. R. Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene. 1989 Apr 15;77(1):61–68. doi: 10.1016/0378-1119(89)90359-4. [DOI] [PubMed] [Google Scholar]
  12. Kelley R. F., O'Connell M. P. Thermodynamic analysis of an antibody functional epitope. Biochemistry. 1993 Jul 13;32(27):6828–6835. doi: 10.1021/bi00078a005. [DOI] [PubMed] [Google Scholar]
  13. Kyhse-Andersen J. Electroblotting of multiple gels: a simple apparatus without buffer tank for rapid transfer of proteins from polyacrylamide to nitrocellulose. J Biochem Biophys Methods. 1984 Dec;10(3-4):203–209. doi: 10.1016/0165-022x(84)90040-x. [DOI] [PubMed] [Google Scholar]
  14. Lewis R. M., Furie B. C., Furie B. Conformation-specific monoclonal antibodies directed against the calcium-stabilized structure of human prothrombin. Biochemistry. 1983 Feb 15;22(4):948–954. doi: 10.1021/bi00273a037. [DOI] [PubMed] [Google Scholar]
  15. Martin A. C., Cheetham J. C., Rees A. R. Modeling antibody hypervariable loops: a combined algorithm. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9268–9272. doi: 10.1073/pnas.86.23.9268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Near R. I., Mudgett-Hunter M., Novotny J., Bruccoleri R., Ng S. C. Characterization of an anti-digoxin antibody binding site by site-directed in vitro mutagenesis. Mol Immunol. 1993 Mar;30(4):369–377. doi: 10.1016/0161-5890(93)90066-k. [DOI] [PubMed] [Google Scholar]
  17. Near R. I., Ng S. C., Mudgett-Hunter M., Hudson N. W., Margolies M. N., Seidman J. G., Haber E., Jacobson M. A. Heavy and light chain contributions to antigen binding in an anti-digoxin chain recombinant antibody produced by transfection of cloned anti-digoxin antibody genes. Mol Immunol. 1990 Sep;27(9):901–909. doi: 10.1016/0161-5890(90)90157-u. [DOI] [PubMed] [Google Scholar]
  18. Ruff-Jamison S., Glenney J. R., Jr Molecular modeling and site-directed mutagenesis of an anti-phosphotyrosine antibody predicts the combining site and allows the detection of higher affinity interactions. Protein Eng. 1993 Aug;6(6):661–668. doi: 10.1093/protein/6.6.661. [DOI] [PubMed] [Google Scholar]
  19. Schulze-Gahmen U., Rini J. M., Wilson I. A. Detailed analysis of the free and bound conformations of an antibody. X-ray structures of Fab 17/9 and three different Fab-peptide complexes. J Mol Biol. 1993 Dec 20;234(4):1098–1118. doi: 10.1006/jmbi.1993.1663. [DOI] [PubMed] [Google Scholar]
  20. Stanfield R. L., Fieser T. M., Lerner R. A., Wilson I. A. Crystal structures of an antibody to a peptide and its complex with peptide antigen at 2.8 A. Science. 1990 May 11;248(4956):712–719. doi: 10.1126/science.2333521. [DOI] [PubMed] [Google Scholar]
  21. Strong R. K., Campbell R., Rose D. R., Petsko G. A., Sharon J., Margolies M. N. Three-dimensional structure of murine anti-p-azophenylarsonate Fab 36-71. 1. X-ray crystallography, site-directed mutagenesis, and modeling of the complex with hapten. Biochemistry. 1991 Apr 16;30(15):3739–3748. doi: 10.1021/bi00229a022. [DOI] [PubMed] [Google Scholar]
  22. Totrov M., Abagyan R. Detailed ab initio prediction of lysozyme-antibody complex with 1.6 A accuracy. Nat Struct Biol. 1994 Apr;1(4):259–263. doi: 10.1038/nsb0494-259. [DOI] [PubMed] [Google Scholar]
  23. Verdaguer N., Mateu M. G., Andreu D., Giralt E., Domingo E., Fita I. Structure of the major antigenic loop of foot-and-mouth disease virus complexed with a neutralizing antibody: direct involvement of the Arg-Gly-Asp motif in the interaction. EMBO J. 1995 Apr 18;14(8):1690–1696. doi: 10.1002/j.1460-2075.1995.tb07158.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Walls P. H., Sternberg M. J. New algorithm to model protein-protein recognition based on surface complementarity. Applications to antibody-antigen docking. J Mol Biol. 1992 Nov 5;228(1):277–297. doi: 10.1016/0022-2836(92)90506-f. [DOI] [PubMed] [Google Scholar]
  25. Wang A. M., Creasey A. A., Ladner M. B., Lin L. S., Strickler J., Van Arsdell J. N., Yamamoto R., Mark D. F. Molecular cloning of the complementary DNA for human tumor necrosis factor. Science. 1985 Apr 12;228(4696):149–154. doi: 10.1126/science.3856324. [DOI] [PubMed] [Google Scholar]
  26. Wang D., Liao J., Mitra D., Akolkar P. N., Gruezo F., Kabat E. A. The repertoire of antibodies to a single antigenic determinant. Mol Immunol. 1991 Dec;28(12):1387–1397. doi: 10.1016/0161-5890(91)90041-h. [DOI] [PubMed] [Google Scholar]
  27. Wittman V., Wong H. C. Regulation of the penicillinase genes of Bacillus licheniformis: interaction of the pen repressor with its operators. J Bacteriol. 1988 Jul;170(7):3206–3212. doi: 10.1128/jb.170.7.3206-3212.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. de la Paz P., Sutton B. J., Darsley M. J., Rees A. R. Modelling of the combining sites of three anti-lysozyme monoclonal antibodies and of the complex between one of the antibodies and its epitope. EMBO J. 1986 Feb;5(2):415–425. doi: 10.1002/j.1460-2075.1986.tb04227.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES