Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1998 Aug;7(8):1768–1771. doi: 10.1002/pro.5560070811

Enzyme-mononucleotide interactions: three different folds share common structural elements for ATP recognition.

K A Denessiouk 1, J V Lehtonen 1, M S Johnson 1
PMCID: PMC2144091  PMID: 10082373

Abstract

Three ATP-dependent enzymes with different folds, cAMP-dependent protein kinase, D-Ala:D-Ala ligase and the alpha-subunit of the alpha2beta2 ribonucleotide reductase, have a similar organization of their ATP-binding sites. The most meaningful similarity was found over 23 structurally equivalent residues in each protein and includes three strands each from their beta-sheets, in addition to a connecting loop. The equivalent secondary structure elements in each of these enzymes donate four amino acids forming key hydrogen bonds responsible for the common orientation of the "AMP" moieties of their ATP-ligands. One lysine residue conserved throughout the three families binds the alpha-phosphate in each protein. The common fragments of structure also position some, but not all, of the equivalent residues involved in hydrophobic contacts with the adenine ring. These examples of convergent evolution reinforce the view that different proteins can fold in different ways to produce similar structures locally, and nature can take advantage of these features when structure and function demand it, as shown here for the common mode of ATP-binding by three unrelated proteins.

Full Text

The Full Text of this article is available as a PDF (1.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Artymiuk P. J., Poirrette A. R., Rice D. W., Willett P. Biotin carboxylase comes into the fold. Nat Struct Biol. 1996 Feb;3(2):128–132. doi: 10.1038/nsb0296-128. [DOI] [PubMed] [Google Scholar]
  2. Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
  3. Bossemeyer D., Engh R. A., Kinzel V., Ponstingl H., Huber R. Phosphotransferase and substrate binding mechanism of the cAMP-dependent protein kinase catalytic subunit from porcine heart as deduced from the 2.0 A structure of the complex with Mn2+ adenylyl imidodiphosphate and inhibitor peptide PKI(5-24). EMBO J. 1993 Mar;12(3):849–859. doi: 10.1002/j.1460-2075.1993.tb05725.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Denessiouk K. A., Lehtonen J. V., Korpela T., Johnson M. S. Two "unrelated" families of ATP-dependent enzymes share extensive structural similarities about their cofactor binding sites. Protein Sci. 1998 May;7(5):1136–1146. doi: 10.1002/pro.5560070507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Eriksson M., Uhlin U., Ramaswamy S., Ekberg M., Regnström K., Sjöberg B. M., Eklund H. Binding of allosteric effectors to ribonucleotide reductase protein R1: reduction of active-site cysteines promotes substrate binding. Structure. 1997 Aug 15;5(8):1077–1092. doi: 10.1016/s0969-2126(97)00259-1. [DOI] [PubMed] [Google Scholar]
  6. Esser L., Wang C. R., Hosaka M., Smagula C. S., Südhof T. C., Deisenhofer J. Synapsin I is structurally similar to ATP-utilizing enzymes. EMBO J. 1998 Feb 16;17(4):977–984. doi: 10.1093/emboj/17.4.977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fan C., Moews P. C., Shi Y., Walsh C. T., Knox J. R. A common fold for peptide synthetases cleaving ATP to ADP: glutathione synthetase and D-alanine:d-alanine ligase of Escherichia coli. Proc Natl Acad Sci U S A. 1995 Feb 14;92(4):1172–1176. doi: 10.1073/pnas.92.4.1172. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fan C., Moews P. C., Walsh C. T., Knox J. R. Vancomycin resistance: structure of D-alanine:D-alanine ligase at 2.3 A resolution. Science. 1994 Oct 21;266(5184):439–443. doi: 10.1126/science.7939684. [DOI] [PubMed] [Google Scholar]
  9. Fan C., Park I. S., Walsh C. T., Knox J. R. D-alanine:D-alanine ligase: phosphonate and phosphinate intermediates with wild type and the Y216F mutant. Biochemistry. 1997 Mar 4;36(9):2531–2538. doi: 10.1021/bi962431t. [DOI] [PubMed] [Google Scholar]
  10. Galperin M. Y., Koonin E. V. A diverse superfamily of enzymes with ATP-dependent carboxylate-amine/thiol ligase activity. Protein Sci. 1997 Dec;6(12):2639–2643. doi: 10.1002/pro.5560061218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hanks S. K., Quinn A. M., Hunter T. The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science. 1988 Jul 1;241(4861):42–52. doi: 10.1126/science.3291115. [DOI] [PubMed] [Google Scholar]
  12. Hanks S. K., Quinn A. M. Protein kinase catalytic domain sequence database: identification of conserved features of primary structure and classification of family members. Methods Enzymol. 1991;200:38–62. doi: 10.1016/0076-6879(91)00126-h. [DOI] [PubMed] [Google Scholar]
  13. Herzberg O., Chen C. C., Kapadia G., McGuire M., Carroll L. J., Noh S. J., Dunaway-Mariano D. Swiveling-domain mechanism for enzymatic phosphotransfer between remote reaction sites. Proc Natl Acad Sci U S A. 1996 Apr 2;93(7):2652–2657. doi: 10.1073/pnas.93.7.2652. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hibi T., Nishioka T., Kato H., Tanizawa K., Fukui T., Katsube Y., Oda J. Structure of the multifunctional loops in the nonclassical ATP-binding fold of glutathione synthetase. Nat Struct Biol. 1996 Jan;3(1):16–18. doi: 10.1038/nsb0196-16. [DOI] [PubMed] [Google Scholar]
  15. Hubbard S. R., Wei L., Ellis L., Hendrickson W. A. Crystal structure of the tyrosine kinase domain of the human insulin receptor. Nature. 1994 Dec 22;372(6508):746–754. doi: 10.1038/372746a0. [DOI] [PubMed] [Google Scholar]
  16. Kobayashi N., Go N. A method to search for similar protein local structures at ligand binding sites and its application to adenine recognition. Eur Biophys J. 1997;26(2):135–144. doi: 10.1007/s002490050065. [DOI] [PubMed] [Google Scholar]
  17. Kobayashi N., Go N. ATP binding proteins with different folds share a common ATP-binding structural motif. Nat Struct Biol. 1997 Jan;4(1):6–7. doi: 10.1038/nsb0197-6. [DOI] [PubMed] [Google Scholar]
  18. Matsuda K., Mizuguchi K., Nishioka T., Kato H., Go N., Oda J. Crystal structure of glutathione synthetase at optimal pH: domain architecture and structural similarity with other proteins. Protein Eng. 1996 Dec;9(12):1083–1092. doi: 10.1093/protein/9.12.1083. [DOI] [PubMed] [Google Scholar]
  19. Murzin A. G. Structural classification of proteins: new superfamilies. Curr Opin Struct Biol. 1996 Jun;6(3):386–394. doi: 10.1016/s0959-440x(96)80059-5. [DOI] [PubMed] [Google Scholar]
  20. Schulz G. E., Schiltz E., Tomasselli A. G., Frank R., Brune M., Wittinghofer A., Schirmer R. H. Structural relationships in the adenylate kinase family. Eur J Biochem. 1986 Nov 17;161(1):127–132. doi: 10.1111/j.1432-1033.1986.tb10132.x. [DOI] [PubMed] [Google Scholar]
  21. Schulz G. E., Schirmer R. H. Topological comparison of adenyl kinase with other proteins. Nature. 1974 Jul 12;250(462):142–144. doi: 10.1038/250142a0. [DOI] [PubMed] [Google Scholar]
  22. Stapleton M. A., Javid-Majd F., Harmon M. F., Hanks B. A., Grahmann J. L., Mullins L. S., Raushel F. M. Role of conserved residues within the carboxy phosphate domain of carbamoyl phosphate synthetase. Biochemistry. 1996 Nov 12;35(45):14352–14361. doi: 10.1021/bi961183y. [DOI] [PubMed] [Google Scholar]
  23. Thoden J. B., Holden H. M., Wesenberg G., Raushel F. M., Rayment I. Structure of carbamoyl phosphate synthetase: a journey of 96 A from substrate to product. Biochemistry. 1997 May 27;36(21):6305–6316. doi: 10.1021/bi970503q. [DOI] [PubMed] [Google Scholar]
  24. Waldrop G. L., Rayment I., Holden H. M. Three-dimensional structure of the biotin carboxylase subunit of acetyl-CoA carboxylase. Biochemistry. 1994 Aug 30;33(34):10249–10256. doi: 10.1021/bi00200a004. [DOI] [PubMed] [Google Scholar]
  25. Wolodko W. T., Fraser M. E., James M. N., Bridger W. A. The crystal structure of succinyl-CoA synthetase from Escherichia coli at 2.5-A resolution. J Biol Chem. 1994 Apr 8;269(14):10883–10890. doi: 10.2210/pdb1scu/pdb. [DOI] [PubMed] [Google Scholar]
  26. Xu R. M., Carmel G., Sweet R. M., Kuret J., Cheng X. Crystal structure of casein kinase-1, a phosphate-directed protein kinase. EMBO J. 1995 Mar 1;14(5):1015–1023. doi: 10.1002/j.1460-2075.1995.tb07082.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Yamaguchi H., Kato H., Hata Y., Nishioka T., Kimura A., Oda J., Katsube Y. Three-dimensional structure of the glutathione synthetase from Escherichia coli B at 2.0 A resolution. J Mol Biol. 1993 Feb 20;229(4):1083–1100. doi: 10.1006/jmbi.1993.1106. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES