Abstract
Differential chemical modification of the lysines and amino-terminus of Escherichia coli single-strand binding (SSB) protein was used to determine their roles in the binding of SSB to single-stranded DNA (ssDNA). A combination of isotope labeling and mass spectrometry was used to determine the rates at which SSB was acetylated by acetic anhydride. First, SSB was labeled by deuterated acetic anhydride for given lengths of time in the presence or absence of single-stranded ssDNA. Then, the protein was denatured and completely acetylated by nondeuterated acetic anhydride. Enzymatic digests of the completely acetylated, isotopically labeled SSB were analyzed by electrospray ionization mass spectrometry. The intensities of the deuterated and nondeuterated forms of acetylated peptides provided accurate quantification of the reactivity of the amines in native SSB, either free or bound to ssDNA. Acetylation rate constants were determined from time course measurements. In the absence of ssDNA, the terminal alpha-amine of SSB was 10-fold more reactive than Lys residues at positions 43, 62, 73, and 87. The reactivities of Lys 7 and 49 were much lower yet, suggesting that they have very limited access to solution under any condition. In the presence of ssDNA, the reactivities of the amino-terminus and Lys residues 43, 62, 73, and 87 were reduced by factors of 3.7-25, indicating that the environments around all of these amines is substantially altered by binding of SSB to ssDNA. Three of these residues are located near putative ssDNA binding sites, whereas Lys 87 is located at the monomer-monomer interface.
Full Text
The Full Text of this article is available as a PDF (1.9 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akashi S., Niitsu U., Yuji R., Ide H., Hirayama K. Investigation of the interaction between enzyme and inhibitor by the combination of chemical modification, electrospray ionization mass spectrometry and frit-fast atom bombardment liquid chromatography/mass spectrometry. Biol Mass Spectrom. 1993 Feb;22(2):124–132. doi: 10.1002/bms.1200220205. [DOI] [PubMed] [Google Scholar]
- Bandyopadhyay P. K., Wu C. W. Fluorescence and chemical studies on the interaction of Escherichia coli DNA-binding protein with single-stranded DNA. Biochemistry. 1978 Sep 19;17(19):4078–4085. doi: 10.1021/bi00612a032. [DOI] [PubMed] [Google Scholar]
- Bayer I., Fliess A., Greipel J., Urbanke C., Maass G. Modulation of the affinity of the single-stranded DNA-binding protein of Escherichia coli (E. coli SSB) to poly(dT) by site-directed mutagenesis. Eur J Biochem. 1989 Feb 1;179(2):399–404. doi: 10.1111/j.1432-1033.1989.tb14567.x. [DOI] [PubMed] [Google Scholar]
- Berkowitz S. A., Day L. A. Molecular weight of single-stranded fd bacteriophage DNA. High speed equilibrium sedimentation and light scattering measurements. Biochemistry. 1974 Nov 5;13(23):4825–4831. doi: 10.1021/bi00720a022. [DOI] [PubMed] [Google Scholar]
- Bochkarev A., Pfuetzner R. A., Edwards A. M., Frappier L. Structure of the single-stranded-DNA-binding domain of replication protein A bound to DNA. Nature. 1997 Jan 9;385(6612):176–181. doi: 10.1038/385176a0. [DOI] [PubMed] [Google Scholar]
- Bujalowski W., Lohman T. M. Monomers of the Escherichia coli SSB-1 mutant protein bind single-stranded DNA. J Mol Biol. 1991 Jan 5;217(1):63–74. doi: 10.1016/0022-2836(91)90611-9. [DOI] [PubMed] [Google Scholar]
- Casas-Finet J. R., Khamis M. I., Maki A. H., Ruvolo P. P., Chase J. W. Optically detected magnetic resonance of tryptophan residues in Escherichia coli ssb gene product and E. coli plasmid-encoded single-stranded DNA-binding proteins and their complexes with poly(deoxythymidylic) acid. J Biol Chem. 1987 Jun 25;262(18):8574–8583. [PubMed] [Google Scholar]
- Curth U., Greipel J., Urbanke C., Maass G. Multiple binding modes of the single-stranded DNA binding protein from Escherichia coli as detected by tryptophan fluorescence and site-directed mutagenesis. Biochemistry. 1993 Mar 16;32(10):2585–2591. doi: 10.1021/bi00061a016. [DOI] [PubMed] [Google Scholar]
- Curth U., Urbanke C., Greipel J., Gerberding H., Tiranti V., Zeviani M. Single-stranded-DNA-binding proteins from human mitochondria and Escherichia coli have analogous physicochemical properties. Eur J Biochem. 1994 Apr 1;221(1):435–443. doi: 10.1111/j.1432-1033.1994.tb18756.x. [DOI] [PubMed] [Google Scholar]
- Folmer R. H., Folkers P. J., Kaan A., Jonker A. J., Aelen J. M., Konings R. N., Hilbers C. W. Secondary structure of the single-stranded DNA binding protein encoded by filamentous phage Pf3 as determined by NMR. Eur J Biochem. 1994 Sep 1;224(2):663–676. doi: 10.1111/j.1432-1033.1994.00663.x. [DOI] [PubMed] [Google Scholar]
- Glocker M. O., Borchers C., Fiedler W., Suckau D., Przybylski M. Molecular characterization of surface topology in protein tertiary structures by amino-acylation and mass spectrometric peptide mapping. Bioconjug Chem. 1994 Nov-Dec;5(6):583–590. doi: 10.1021/bc00030a014. [DOI] [PubMed] [Google Scholar]
- Griep M. A., Lokey E. R. The role of zinc and the reactivity of cysteines in Escherichia coli primase. Biochemistry. 1996 Jun 25;35(25):8260–8267. doi: 10.1021/bi952948p. [DOI] [PubMed] [Google Scholar]
- Hasan A., Smith J. B., Qin W., Smith D. L. The reaction of bovine lens alpha A-crystallin with aspirin. Exp Eye Res. 1993 Jul;57(1):29–35. doi: 10.1006/exer.1993.1095. [DOI] [PubMed] [Google Scholar]
- Khamis M. I., Casas-Finet J. R., Maki A. H., Murphy J. B., Chase J. W. Investigation of the role of individual tryptophan residues in the binding of Escherichia coli single-stranded DNA binding protein to single-stranded polynucleotides. A study by optical detection of magnetic resonance and site-selected mutagenesis. J Biol Chem. 1987 Aug 15;262(23):10938–10945. [PubMed] [Google Scholar]
- Lohman T. M., Overman L. B. Two binding modes in Escherichia coli single strand binding protein-single stranded DNA complexes. Modulation by NaCl concentration. J Biol Chem. 1985 Mar 25;260(6):3594–3603. [PubMed] [Google Scholar]
- Merrill B. M., Williams K. R., Chase J. W., Konigsberg W. H. Photochemical cross-linking of the Escherichia coli single-stranded DNA-binding protein to oligodeoxynucleotides. Identification of phenylalanine 60 as the site of cross-linking. J Biol Chem. 1984 Sep 10;259(17):10850–10856. [PubMed] [Google Scholar]
- Meyer R. R., Laine P. S. The single-stranded DNA-binding protein of Escherichia coli. Microbiol Rev. 1990 Dec;54(4):342–380. doi: 10.1128/mr.54.4.342-380.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Overman L. B., Bujalowski W., Lohman T. M. Equilibrium binding of Escherichia coli single-strand binding protein to single-stranded nucleic acids in the (SSB)65 binding mode. Cation and anion effects and polynucleotide specificity. Biochemistry. 1988 Jan 12;27(1):456–471. doi: 10.1021/bi00401a067. [DOI] [PubMed] [Google Scholar]
- Qin W., Smith J. B., Smith D. L. Rates of carbamylation of specific lysyl residues in bovine alpha-crystallins. J Biol Chem. 1992 Dec 25;267(36):26128–26133. [PubMed] [Google Scholar]
- Raghunathan S., Ricard C. S., Lohman T. M., Waksman G. Crystal structure of the homo-tetrameric DNA binding domain of Escherichia coli single-stranded DNA-binding protein determined by multiwavelength x-ray diffraction on the selenomethionyl protein at 2.9-A resolution. Proc Natl Acad Sci U S A. 1997 Jun 24;94(13):6652–6657. doi: 10.1073/pnas.94.13.6652. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sancar A., Williams K. R., Chase J. W., Rupp W. D. Sequences of the ssb gene and protein. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4274–4278. doi: 10.1073/pnas.78.7.4274. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shamoo Y., Friedman A. M., Parsons M. R., Konigsberg W. H., Steitz T. A. Crystal structure of a replication fork single-stranded DNA binding protein (T4 gp32) complexed to DNA. Nature. 1995 Jul 27;376(6538):362–366. doi: 10.1038/376362a0. [DOI] [PubMed] [Google Scholar]
- Webster G., Genschel J., Curth U., Urbanke C., Kang C., Hilgenfeld R. A common core for binding single-stranded DNA: structural comparison of the single-stranded DNA-binding proteins (SSB) from E. coli and human mitochondria. FEBS Lett. 1997 Jul 14;411(2-3):313–316. doi: 10.1016/s0014-5793(97)00747-3. [DOI] [PubMed] [Google Scholar]
- Williams K. R., Murphy J. B., Chase J. W. Characterization of the structural and functional defect in the Escherichia coli single-stranded DNA binding protein encoded by the ssb-1 mutant gene. Expression of the ssb-1 gene under lambda pL regulation. J Biol Chem. 1984 Oct 10;259(19):11804–11811. [PubMed] [Google Scholar]
- Yang C., Curth U., Urbanke C., Kang C. Crystal structure of human mitochondrial single-stranded DNA binding protein at 2.4 A resolution. Nat Struct Biol. 1997 Feb;4(2):153–157. doi: 10.1038/nsb0297-153. [DOI] [PubMed] [Google Scholar]