Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1999 Jan;8(1):50–64. doi: 10.1110/ps.8.1.50

Protein-protein recognition: an experimental and computational study of the R89K mutation in Raf and its effect on Ras binding.

J Zeng 1, M Fridman 1, H Maruta 1, H R Treutlein 1, T Simonson 1
PMCID: PMC2144096  PMID: 10210183

Abstract

Binding of the protein Raf to the active form of Ras promotes activation of the MAP kinase signaling pathway, triggering cell growth and differentiation. Raf/Arg89 in the center of the binding interface plays an important role determining Ras-Raf binding affinity. We have investigated experimentally and computationally the Raf-R89K mutation, which abolishes signaling in vivo. The binding to [gamma-35S]GTP-Ras of a fusion protein between the Raf-binding domain (RBD) of Raf and GST was reduced at least 175-fold by the mutation, corresponding to a standard binding free energy decrease of at least 3.0 kcal/mol. To compute this free energy and obtain insights into the microscopic interactions favoring binding, we performed alchemical simulations of the RBD, both complexed to Ras and free in solution, in which residue 89 is gradually mutated from Arg into Lys. The simulations give a standard binding free energy decrease of 2.9+/-1.9 kcal/mol, in agreement with experiment. The use of numerous runs with three different force fields allows insights into the sources of uncertainty in the free energy and its components. The binding decreases partly because of a 7 kcal/mol higher cost to desolvate Lys upon binding, compared to Arg, due to better solvent interactions with the more concentrated Lys charge in the unbound state. This effect is expected to be general, contributing to the lower propensity of Lys to participate in protein-protein interfaces. Large contributions to the free energy change also arise from electrostatic interactions with groups up to 8 A away, namely residues 37-41 in the conserved effector domain of Ras (including 4 kcal/mol from Ser39 which loses a bifurcated hydrogen bond to Arg89), the conserved Lys84 and Lys87 of Raf, and 2-3 specific water molecules. This analysis will provide insights into the large experimental database of Ras-Raf mutations.

Full Text

The Full Text of this article is available as a PDF (2.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Archontis G., Simonson T., Moras D., Karplus M. Specific amino acid recognition by aspartyl-tRNA synthetase studied by free energy simulations. J Mol Biol. 1998 Feb 6;275(5):823–846. doi: 10.1006/jmbi.1997.1470. [DOI] [PubMed] [Google Scholar]
  2. Block C., Janknecht R., Herrmann C., Nassar N., Wittinghofer A. Quantitative structure-activity analysis correlating Ras/Raf interaction in vitro to Raf activation in vivo. Nat Struct Biol. 1996 Mar;3(3):244–251. doi: 10.1038/nsb0396-244. [DOI] [PubMed] [Google Scholar]
  3. Boresch S., Archontis G., Karplus M. Free energy simulations: the meaning of the individual contributions from a component analysis. Proteins. 1994 Sep;20(1):25–33. doi: 10.1002/prot.340200105. [DOI] [PubMed] [Google Scholar]
  4. Boresch S., Karplus M. The meaning of component analysis: decomposition of the free energy in terms of specific interactions. J Mol Biol. 1995 Dec 15;254(5):801–807. doi: 10.1006/jmbi.1995.0656. [DOI] [PubMed] [Google Scholar]
  5. Brady G. P., Szabo A., Sharp K. A. On the decomposition of free energies. J Mol Biol. 1996 Oct 25;263(2):123–125. doi: 10.1006/jmbi.1996.0563. [DOI] [PubMed] [Google Scholar]
  6. Brooks C. L., 3rd, Brünger A., Karplus M. Active site dynamics in protein molecules: a stochastic boundary molecular-dynamics approach. Biopolymers. 1985 May;24(5):843–865. doi: 10.1002/bip.360240509. [DOI] [PubMed] [Google Scholar]
  7. Diamond R. On the use of normal modes in thermal parameter refinement: theory and application to the bovine pancreatic trypsin inhibitor. Acta Crystallogr A. 1990 Jun 1;46(Pt 6):425–435. doi: 10.1107/s0108767390002082. [DOI] [PubMed] [Google Scholar]
  8. Emerson S. D., Madison V. S., Palermo R. E., Waugh D. S., Scheffler J. E., Tsao K. L., Kiefer S. E., Liu S. P., Fry D. C. Solution structure of the Ras-binding domain of c-Raf-1 and identification of its Ras interaction surface. Biochemistry. 1995 May 30;34(21):6911–6918. doi: 10.1021/bi00021a001. [DOI] [PubMed] [Google Scholar]
  9. Fabian J. R., Vojtek A. B., Cooper J. A., Morrison D. K. A single amino acid change in Raf-1 inhibits Ras binding and alters Raf-1 function. Proc Natl Acad Sci U S A. 1994 Jun 21;91(13):5982–5986. doi: 10.1073/pnas.91.13.5982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fridman M., Tikoo A., Varga M., Murphy A., Nur-E-Kamal M. S., Maruta H. The minimal fragments of c-Raf-1 and NF1 that can suppress v-Ha-Ras-induced malignant phenotype. J Biol Chem. 1994 Dec 2;269(48):30105–30108. [PubMed] [Google Scholar]
  11. Gao J., Kuczera K., Tidor B., Karplus M. Hidden thermodynamics of mutant proteins: a molecular dynamics analysis. Science. 1989 Jun 2;244(4908):1069–1072. doi: 10.1126/science.2727695. [DOI] [PubMed] [Google Scholar]
  12. Geyer M., Herrmann C., Wohlgemuth S., Wittinghofer A., Kalbitzer H. R. Structure of the Ras-binding domain of RalGEF and implications for Ras binding and signalling. Nat Struct Biol. 1997 Sep;4(9):694–699. doi: 10.1038/nsb0997-694. [DOI] [PubMed] [Google Scholar]
  13. Gibbs J. B., Sigal I. S., Poe M., Scolnick E. M. Intrinsic GTPase activity distinguishes normal and oncogenic ras p21 molecules. Proc Natl Acad Sci U S A. 1984 Sep;81(18):5704–5708. doi: 10.1073/pnas.81.18.5704. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gilson M. K., Given J. A., Bush B. L., McCammon J. A. The statistical-thermodynamic basis for computation of binding affinities: a critical review. Biophys J. 1997 Mar;72(3):1047–1069. doi: 10.1016/S0006-3495(97)78756-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Heidecker G., Kölch W., Morrison D. K., Rapp U. R. The role of Raf-1 phosphorylation in signal transduction. Adv Cancer Res. 1992;58:53–73. doi: 10.1016/s0065-230x(08)60290-0. [DOI] [PubMed] [Google Scholar]
  16. Higuchi R., Krummel B., Saiki R. K. A general method of in vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions. Nucleic Acids Res. 1988 Aug 11;16(15):7351–7367. doi: 10.1093/nar/16.15.7351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ho S. N., Hunt H. D., Horton R. M., Pullen J. K., Pease L. R. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene. 1989 Apr 15;77(1):51–59. doi: 10.1016/0378-1119(89)90358-2. [DOI] [PubMed] [Google Scholar]
  18. Hodel A., Rice L. M., Simonson T., Fox R. O., Brünger A. T. Proline cis-trans isomerization in staphylococcal nuclease: multi-substrate free energy perturbation calculations. Protein Sci. 1995 Apr;4(4):636–654. doi: 10.1002/pro.5560040405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Huang L., Weng X., Hofer F., Martin G. S., Kim S. H. Three-dimensional structure of the Ras-interacting domain of RalGDS. Nat Struct Biol. 1997 Aug;4(8):609–615. doi: 10.1038/nsb0897-609. [DOI] [PubMed] [Google Scholar]
  20. Janin J., Miller S., Chothia C. Surface, subunit interfaces and interior of oligomeric proteins. J Mol Biol. 1988 Nov 5;204(1):155–164. doi: 10.1016/0022-2836(88)90606-7. [DOI] [PubMed] [Google Scholar]
  21. Janin J. Protein-protein recognition. Prog Biophys Mol Biol. 1995;64(2-3):145–166. doi: 10.1016/s0079-6107(96)00001-6. [DOI] [PubMed] [Google Scholar]
  22. Jones S., Thornton J. M. Protein-protein interactions: a review of protein dimer structures. Prog Biophys Mol Biol. 1995;63(1):31–65. doi: 10.1016/0079-6107(94)00008-w. [DOI] [PubMed] [Google Scholar]
  23. Kraulis P. J., Domaille P. J., Campbell-Burk S. L., Van Aken T., Laue E. D. Solution structure and dynamics of ras p21.GDP determined by heteronuclear three- and four-dimensional NMR spectroscopy. Biochemistry. 1994 Mar 29;33(12):3515–3531. doi: 10.1021/bi00178a008. [DOI] [PubMed] [Google Scholar]
  24. Lau F. T., Karplus M. Molecular recognition in proteins. Simulation analysis of substrate binding by a tyrosyl-tRNA synthetase mutant. J Mol Biol. 1994 Mar 4;236(4):1049–1066. doi: 10.1016/0022-2836(94)90011-6. [DOI] [PubMed] [Google Scholar]
  25. Mark A. E., van Gunsteren W. F. Decomposition of the free energy of a system in terms of specific interactions. Implications for theoretical and experimental studies. J Mol Biol. 1994 Jul 8;240(2):167–176. doi: 10.1006/jmbi.1994.1430. [DOI] [PubMed] [Google Scholar]
  26. Maruta H., Holden J., Sizeland A., D'Abaco G. The residues of Ras and Rap proteins that determine their GAP specificities. J Biol Chem. 1991 Jun 25;266(18):11661–11668. [PubMed] [Google Scholar]
  27. McCormick F., Wittinghofer A. Interactions between Ras proteins and their effectors. Curr Opin Biotechnol. 1996 Aug;7(4):449–456. doi: 10.1016/s0958-1669(96)80123-6. [DOI] [PubMed] [Google Scholar]
  28. Milburn M. V., Tong L., deVos A. M., Brünger A., Yamaizumi Z., Nishimura S., Kim S. H. Molecular switch for signal transduction: structural differences between active and inactive forms of protooncogenic ras proteins. Science. 1990 Feb 23;247(4945):939–945. doi: 10.1126/science.2406906. [DOI] [PubMed] [Google Scholar]
  29. Miyamoto S., Kollman P. A. Absolute and relative binding free energy calculations of the interaction of biotin and its analogs with streptavidin using molecular dynamics/free energy perturbation approaches. Proteins. 1993 Jul;16(3):226–245. doi: 10.1002/prot.340160303. [DOI] [PubMed] [Google Scholar]
  30. Moodie S. A., Willumsen B. M., Weber M. J., Wolfman A. Complexes of Ras.GTP with Raf-1 and mitogen-activated protein kinase kinase. Science. 1993 Jun 11;260(5114):1658–1661. doi: 10.1126/science.8503013. [DOI] [PubMed] [Google Scholar]
  31. Nassar N., Horn G., Herrmann C., Block C., Janknecht R., Wittinghofer A. Ras/Rap effector specificity determined by charge reversal. Nat Struct Biol. 1996 Aug;3(8):723–729. doi: 10.1038/nsb0896-723. [DOI] [PubMed] [Google Scholar]
  32. Nassar N., Horn G., Herrmann C., Scherer A., McCormick F., Wittinghofer A. The 2.2 A crystal structure of the Ras-binding domain of the serine/threonine kinase c-Raf1 in complex with Rap1A and a GTP analogue. Nature. 1995 Jun 15;375(6532):554–560. doi: 10.1038/375554a0. [DOI] [PubMed] [Google Scholar]
  33. Pai E. F., Kabsch W., Krengel U., Holmes K. C., John J., Wittinghofer A. Structure of the guanine-nucleotide-binding domain of the Ha-ras oncogene product p21 in the triphosphate conformation. Nature. 1989 Sep 21;341(6239):209–214. doi: 10.1038/341209a0. [DOI] [PubMed] [Google Scholar]
  34. Pomès R., Willson R. C., McCammon J. A. Free energy simulations of the HyHEL-10/HEL antibody-antigen complex. Protein Eng. 1995 Jul;8(7):663–675. doi: 10.1093/protein/8.7.663. [DOI] [PubMed] [Google Scholar]
  35. Shirouzu M., Koide H., Fujita-Yoshigaki J., Oshio H., Toyama Y., Yamasaki K., Fuhrman S. A., Villafranca E., Kaziro Y., Yokoyama S. Mutations that abolish the ability of Ha-Ras to associate with Raf-1. Oncogene. 1994 Aug;9(8):2153–2157. [PubMed] [Google Scholar]
  36. Simonson T., Brünger A. T. Thermodynamics of protein-peptide interactions in the ribonuclease-S system studied by molecular dynamics and free energy calculations. Biochemistry. 1992 Sep 15;31(36):8661–8674. doi: 10.1021/bi00151a037. [DOI] [PubMed] [Google Scholar]
  37. Sternberg M. J., Grace D. E., Phillips D. C. Dynamic information from protein crystallography. An analysis of temperature factors from refinement of the hen egg-white lysozyme structure. J Mol Biol. 1979 May 25;130(3):231–252. doi: 10.1016/0022-2836(79)90539-4. [DOI] [PubMed] [Google Scholar]
  38. Sun Y. C., Veenstra D. L., Kollman P. A. Free energy calculations of the mutation of Ile96-->Ala in barnase: contributions to the difference in stability. Protein Eng. 1996 Mar;9(3):273–281. doi: 10.1093/protein/9.3.273. [DOI] [PubMed] [Google Scholar]
  39. Vojtek A. B., Hollenberg S. M., Cooper J. A. Mammalian Ras interacts directly with the serine/threonine kinase Raf. Cell. 1993 Jul 16;74(1):205–214. doi: 10.1016/0092-8674(93)90307-c. [DOI] [PubMed] [Google Scholar]
  40. Wade R. C., McCammon J. A. Binding of an antiviral agent to a sensitive and a resistant human rhinovirus. Computer simulation studies with sampling of amino acid side-chain conformations. II. Calculation of free-energy differences by thermodynamic integration. J Mol Biol. 1992 Jun 5;225(3):697–712. doi: 10.1016/0022-2836(92)90395-z. [DOI] [PubMed] [Google Scholar]
  41. Zeng J., Treutlein H. R., Simonson T. Conformation of the Ras-binding domain of Raf studied by molecular dynamics and free energy simulations. Proteins. 1998 May 1;31(2):186–200. doi: 10.1002/(sici)1097-0134(19980501)31:2<186::aid-prot8>3.0.co;2-k. [DOI] [PubMed] [Google Scholar]
  42. Zhang X. F., Settleman J., Kyriakis J. M., Takeuchi-Suzuki E., Elledge S. J., Marshall M. S., Bruder J. T., Rapp U. R., Avruch J. Normal and oncogenic p21ras proteins bind to the amino-terminal regulatory domain of c-Raf-1. Nature. 1993 Jul 22;364(6435):308–313. doi: 10.1038/364308a0. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES