Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1999 Jan;8(1):122–136. doi: 10.1110/ps.8.1.122

Structural comparisons of TIM barrel proteins suggest functional and evolutionary relationships between beta-galactosidase and other glycohydrolases.

D H Juers 1, R E Huber 1, B W Matthews 1
PMCID: PMC2144101  PMID: 10210191

Abstract

Beta-galactosidase (lacZ) from Escherichia coli is a 464 kDa homotetramer. Each subunit consists of five domains, the third being an alpha/beta barrel that contains most of the active site residues. A comparison is made between each of the domains and a large set of proteins representative of all structures from the protein data bank. Many structures include an alpha/beta barrel. Those that are most similar to the alpha/beta barrel of E. coli beta-galactosidase have similar catalytic residues and belong to the so-called "4/7 superfamily" of glycosyl hydrolases. The structure comparison suggests that beta-amylase should also be included in this family. Of three structure comparison methods tested, the "ProSup" procedure of Zu-Kang and Sippl and the "Superimpose" procedure of Diederichs were slightly superior in discriminating the members of this superfamily, although all procedures were very powerful in identifying related protein structures. Domains 1, 2, and 4 of E. coli beta-galactosidase have topologies related to "jelly-roll barrels" and "immunoglobulin constant" domains. This fold also occurs in the cellulose binding domains (CBDs) of a number of glycosyl hydrolases. The fold of domain 1 of E. coli beta-galactosidase is closely related to some CBDs, and the domain contributes to substrate binding, but in a manner unrelated to cellulose binding by the CBDs. This is typical of domains 1, 2, 4, and 5, which appear to have been recruited to play roles in beta-galactosidase that are unrelated to the functions that such domains provide in other contexts. It is proposed that beta-galactosidase arose from a prototypical single domain alpha/beta barrel with an extended active site cleft. The subsequent incorporation of elements from other domains could then have reduced the size of the active site from a cleft to a pocket to better hydrolyze the disaccharide lactose and, at the same time, to facilitate the production of inducer, allolactose.

Full Text

The Full Text of this article is available as a PDF (3.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams R. M., Yoast S., Mainzer S. E., Moon K., Palombella A. L., Estell D. A., Power S. D., Schmidt B. F. Characterization of two cold-sensitive mutants of the beta-galactosidase from Lactobacillus delbruckii subsp. bulgaricus. J Biol Chem. 1994 Feb 25;269(8):5666–5672. [PubMed] [Google Scholar]
  2. Aguilar C. F., Sanderson I., Moracci M., Ciaramella M., Nucci R., Rossi M., Pearl L. H. Crystal structure of the beta-glycosidase from the hyperthermophilic archeon Sulfolobus solfataricus: resilience as a key factor in thermostability. J Mol Biol. 1997 Sep 5;271(5):789–802. doi: 10.1006/jmbi.1997.1215. [DOI] [PubMed] [Google Scholar]
  3. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  4. Barrett T., Suresh C. G., Tolley S. P., Dodson E. J., Hughes M. A. The crystal structure of a cyanogenic beta-glucosidase from white clover, a family 1 glycosyl hydrolase. Structure. 1995 Sep 15;3(9):951–960. doi: 10.1016/s0969-2126(01)00229-5. [DOI] [PubMed] [Google Scholar]
  5. Burmeister W. P., Cottaz S., Driguez H., Iori R., Palmieri S., Henrissat B. The crystal structures of Sinapis alba myrosinase and a covalent glycosyl-enzyme intermediate provide insights into the substrate recognition and active-site machinery of an S-glycosidase. Structure. 1997 May 15;5(5):663–675. doi: 10.1016/s0969-2126(97)00221-9. [DOI] [PubMed] [Google Scholar]
  6. Celada F., Ullmann A., Monod J. An immunological study of complementary fragments of beta-galactosidase. Biochemistry. 1974 Dec 31;13(27):5543–5547. doi: 10.1021/bi00724a014. [DOI] [PubMed] [Google Scholar]
  7. Chen L., Fincher G. B., Høj P. B. Evolution of polysaccharide hydrolase substrate specificity. Catalytic amino acids are conserved in barley 1,3-1,4- and 1,3-beta-glucanases. J Biol Chem. 1993 Jun 25;268(18):13318–13326. [PubMed] [Google Scholar]
  8. Derewenda U., Swenson L., Green R., Wei Y., Morosoli R., Shareck F., Kluepfel D., Derewenda Z. S. Crystal structure, at 2.6-A resolution, of the Streptomyces lividans xylanase A, a member of the F family of beta-1,4-D-glycanases. J Biol Chem. 1994 Aug 19;269(33):20811–20814. [PubMed] [Google Scholar]
  9. Diederichs K. Structural superposition of proteins with unknown alignment and detection of topological similarity using a six-dimensional search algorithm. Proteins. 1995 Oct;23(2):187–195. doi: 10.1002/prot.340230208. [DOI] [PubMed] [Google Scholar]
  10. Dominguez R., Souchon H., Spinelli S., Dauter Z., Wilson K. S., Chauvaux S., Béguin P., Alzari P. M. A common protein fold and similar active site in two distinct families of beta-glycanases. Nat Struct Biol. 1995 Jul;2(7):569–576. doi: 10.1038/nsb0795-569. [DOI] [PubMed] [Google Scholar]
  11. Ducros V., Czjzek M., Belaich A., Gaudin C., Fierobe H. P., Belaich J. P., Davies G. J., Haser R. Crystal structure of the catalytic domain of a bacterial cellulase belonging to family 5. Structure. 1995 Sep 15;3(9):939–949. doi: 10.1016/S0969-2126(01)00228-3. [DOI] [PubMed] [Google Scholar]
  12. Durand P., Lehn P., Callebaut I., Fabrega S., Henrissat B., Mornon J. P. Active-site motifs of lysosomal acid hydrolases: invariant features of clan GH-A glycosyl hydrolases deduced from hydrophobic cluster analysis. Glycobiology. 1997 Mar;7(2):277–284. doi: 10.1093/glycob/7.2.277. [DOI] [PubMed] [Google Scholar]
  13. Feng Z. K., Sippl M. J. Optimum superimposition of protein structures: ambiguities and implications. Fold Des. 1996;1(2):123–132. doi: 10.1016/s1359-0278(96)00021-1. [DOI] [PubMed] [Google Scholar]
  14. Gaskell A., Crennell S., Taylor G. The three domains of a bacterial sialidase: a beta-propeller, an immunoglobulin module and a galactose-binding jelly-roll. Structure. 1995 Nov 15;3(11):1197–1205. doi: 10.1016/s0969-2126(01)00255-6. [DOI] [PubMed] [Google Scholar]
  15. Gebler J. C., Aebersold R., Withers S. G. Glu-537, not Glu-461, is the nucleophile in the active site of (lac Z) beta-galactosidase from Escherichia coli. J Biol Chem. 1992 Jun 5;267(16):11126–11130. [PubMed] [Google Scholar]
  16. Goldberg M. E. Tertiary structure of Escherichia coli beta-D-galactosidase. J Mol Biol. 1969 Dec 28;46(3):441–446. doi: 10.1016/0022-2836(69)90187-9. [DOI] [PubMed] [Google Scholar]
  17. Hahn M., Keitel T., Heinemann U. Crystal and molecular structure at 0.16-nm resolution of the hybrid Bacillus endo-1,3-1,4-beta-D-glucan 4-glucanohydrolase H(A16-M). Eur J Biochem. 1995 Sep 15;232(3):849–858. [PubMed] [Google Scholar]
  18. Henrissat B., Bairoch A. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J. 1993 Aug 1;293(Pt 3):781–788. doi: 10.1042/bj2930781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Henrissat B., Bairoch A. Updating the sequence-based classification of glycosyl hydrolases. Biochem J. 1996 Jun 1;316(Pt 2):695–696. doi: 10.1042/bj3160695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Henrissat B., Callebaut I., Fabrega S., Lehn P., Mornon J. P., Davies G. Conserved catalytic machinery and the prediction of a common fold for several families of glycosyl hydrolases. Proc Natl Acad Sci U S A. 1995 Jul 18;92(15):7090–7094. doi: 10.1073/pnas.92.15.7090. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Henrissat B., Davies G. Structural and sequence-based classification of glycoside hydrolases. Curr Opin Struct Biol. 1997 Oct;7(5):637–644. doi: 10.1016/s0959-440x(97)80072-3. [DOI] [PubMed] [Google Scholar]
  22. Hobohm U., Sander C. Enlarged representative set of protein structures. Protein Sci. 1994 Mar;3(3):522–524. doi: 10.1002/pro.5560030317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Holm L., Sander C. Protein structure comparison by alignment of distance matrices. J Mol Biol. 1993 Sep 5;233(1):123–138. doi: 10.1006/jmbi.1993.1489. [DOI] [PubMed] [Google Scholar]
  24. Hood J. M., Fowler A. V., Zabin I. On the evolution of beta-galactosidase. Proc Natl Acad Sci U S A. 1978 Jan;75(1):113–116. doi: 10.1073/pnas.75.1.113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Huber R. E., Gupta M. N., Khare S. K. The active site and mechanism of the beta-galactosidase from Escherichia coli. Int J Biochem. 1994 Mar;26(3):309–318. doi: 10.1016/0020-711x(94)90051-5. [DOI] [PubMed] [Google Scholar]
  26. Huber R. E., Kurz G., Wallenfels K. A quantitation of the factors which affect the hydrolase and transgalactosylase activities of beta-galactosidase (E. coli) on lactose. Biochemistry. 1976 May 4;15(9):1994–2001. doi: 10.1021/bi00654a029. [DOI] [PubMed] [Google Scholar]
  27. Huber R. E., Roth N. J., Bahl H. Quaternary structure, Mg2+ interactions, and some kinetic properties of the beta-galactosidase from Thermoanaerobacterium thermosulfurigenes EM1. J Protein Chem. 1996 Oct;15(7):621–629. doi: 10.1007/BF01886744. [DOI] [PubMed] [Google Scholar]
  28. Jacobson R. H., Zhang X. J., DuBose R. F., Matthews B. W. Three-dimensional structure of beta-galactosidase from E. coli. Nature. 1994 Jun 30;369(6483):761–766. doi: 10.1038/369761a0. [DOI] [PubMed] [Google Scholar]
  29. Jain S., Drendel W. B., Chen Z. W., Mathews F. S., Sly W. S., Grubb J. H. Structure of human beta-glucuronidase reveals candidate lysosomal targeting and active-site motifs. Nat Struct Biol. 1996 Apr;3(4):375–381. doi: 10.1038/nsb0496-375. [DOI] [PubMed] [Google Scholar]
  30. Jenkins J., Lo Leggio L., Harris G., Pickersgill R. Beta-glucosidase, beta-galactosidase, family A cellulases, family F xylanases and two barley glycanases form a superfamily of enzymes with 8-fold beta/alpha architecture and with two conserved glutamates near the carboxy-terminal ends of beta-strands four and seven. FEBS Lett. 1995 Apr 10;362(3):281–285. doi: 10.1016/0014-5793(95)00252-5. [DOI] [PubMed] [Google Scholar]
  31. Johnson P. E., Joshi M. D., Tomme P., Kilburn D. G., McIntosh L. P. Structure of the N-terminal cellulose-binding domain of Cellulomonas fimi CenC determined by nuclear magnetic resonance spectroscopy. Biochemistry. 1996 Nov 12;35(45):14381–14394. doi: 10.1021/bi961612s. [DOI] [PubMed] [Google Scholar]
  32. Keresztessy Z., Kiss L., Hughes M. A. Investigation of the active site of the cyanogenic beta-D-glucosidase (linamarase) from Manihot esculenta Crantz (cassava). II. Identification of Glu-198 as an active site carboxylate group with acid catalytic function. Arch Biochem Biophys. 1994 Dec;315(2):323–330. doi: 10.1006/abbi.1994.1507. [DOI] [PubMed] [Google Scholar]
  33. Lawson C. L., van Montfort R., Strokopytov B., Rozeboom H. J., Kalk K. H., de Vries G. E., Penninga D., Dijkhuizen L., Dijkstra B. W. Nucleotide sequence and X-ray structure of cyclodextrin glycosyltransferase from Bacillus circulans strain 251 in a maltose-dependent crystal form. J Mol Biol. 1994 Feb 18;236(2):590–600. doi: 10.1006/jmbi.1994.1168. [DOI] [PubMed] [Google Scholar]
  34. Leahy D. J., Hendrickson W. A., Aukhil I., Erickson H. P. Structure of a fibronectin type III domain from tenascin phased by MAD analysis of the selenomethionyl protein. Science. 1992 Nov 6;258(5084):987–991. doi: 10.1126/science.1279805. [DOI] [PubMed] [Google Scholar]
  35. MacLeod A. M., Lindhorst T., Withers S. G., Warren R. A. The acid/base catalyst in the exoglucanase/xylanase from Cellulomonas fimi is glutamic acid 127: evidence from detailed kinetic studies of mutants. Biochemistry. 1994 May 24;33(20):6371–6376. doi: 10.1021/bi00186a042. [DOI] [PubMed] [Google Scholar]
  36. McCarter J. D., Withers S. G. Mechanisms of enzymatic glycoside hydrolysis. Curr Opin Struct Biol. 1994 Dec;4(6):885–892. doi: 10.1016/0959-440x(94)90271-2. [DOI] [PubMed] [Google Scholar]
  37. Mikami B., Degano M., Hehre E. J., Sacchettini J. C. Crystal structures of soybean beta-amylase reacted with beta-maltose and maltal: active site components and their apparent roles in catalysis. Biochemistry. 1994 Jun 28;33(25):7779–7787. [PubMed] [Google Scholar]
  38. Murzin A. G., Brenner S. E., Hubbard T., Chothia C. SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol. 1995 Apr 7;247(4):536–540. doi: 10.1006/jmbi.1995.0159. [DOI] [PubMed] [Google Scholar]
  39. Navas J., Béguin P. Site-directed mutagenesis of conserved residues of Clostridium thermocellum endoglucanase CelC. Biochem Biophys Res Commun. 1992 Dec 15;189(2):807–812. doi: 10.1016/0006-291x(92)92274-2. [DOI] [PubMed] [Google Scholar]
  40. Parsons M. R., Convery M. A., Wilmot C. M., Yadav K. D., Blakeley V., Corner A. S., Phillips S. E., McPherson M. J., Knowles P. F. Crystal structure of a quinoenzyme: copper amine oxidase of Escherichia coli at 2 A resolution. Structure. 1995 Nov 15;3(11):1171–1184. doi: 10.1016/s0969-2126(01)00253-2. [DOI] [PubMed] [Google Scholar]
  41. Perrakis A., Tews I., Dauter Z., Oppenheim A. B., Chet I., Wilson K. S., Vorgias C. E. Crystal structure of a bacterial chitinase at 2.3 A resolution. Structure. 1994 Dec 15;2(12):1169–1180. doi: 10.1016/s0969-2126(94)00119-7. [DOI] [PubMed] [Google Scholar]
  42. Sakon J., Adney W. S., Himmel M. E., Thomas S. R., Karplus P. A. Crystal structure of thermostable family 5 endocellulase E1 from Acidothermus cellulolyticus in complex with cellotetraose. Biochemistry. 1996 Aug 20;35(33):10648–10660. doi: 10.1021/bi9604439. [DOI] [PubMed] [Google Scholar]
  43. Sakon J., Irwin D., Wilson D. B., Karplus P. A. Structure and mechanism of endo/exocellulase E4 from Thermomonospora fusca. Nat Struct Biol. 1997 Oct;4(10):810–818. doi: 10.1038/nsb1097-810. [DOI] [PubMed] [Google Scholar]
  44. Tews I., Perrakis A., Oppenheim A., Dauter Z., Wilson K. S., Vorgias C. E. Bacterial chitobiase structure provides insight into catalytic mechanism and the basis of Tay-Sachs disease. Nat Struct Biol. 1996 Jul;3(7):638–648. doi: 10.1038/nsb0796-638. [DOI] [PubMed] [Google Scholar]
  45. Ullmann A., Perrin D., Jacob F., Monod J. Identification par complémentation in vitro et purification d'un segment peptidique de la beta-galatosidase d'escherichia coli. J Mol Biol. 1965 Jul;12(3):918–923. doi: 10.1016/s0022-2836(65)80338-2. [DOI] [PubMed] [Google Scholar]
  46. Varghese J. N., Garrett T. P., Colman P. M., Chen L., Høj P. B., Fincher G. B. Three-dimensional structures of two plant beta-glucan endohydrolases with distinct substrate specificities. Proc Natl Acad Sci U S A. 1994 Mar 29;91(7):2785–2789. doi: 10.1073/pnas.91.7.2785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Wang Q., Tull D., Meinke A., Gilkes N. R., Warren R. A., Aebersold R., Withers S. G. Glu280 is the nucleophile in the active site of Clostridium thermocellum CelC, a family A endo-beta-1,4-glucanase. J Biol Chem. 1993 Jul 5;268(19):14096–14102. [PubMed] [Google Scholar]
  48. White A., Withers S. G., Gilkes N. R., Rose D. R. Crystal structure of the catalytic domain of the beta-1,4-glycanase cex from Cellulomonas fimi. Biochemistry. 1994 Oct 25;33(42):12546–12552. doi: 10.1021/bi00208a003. [DOI] [PubMed] [Google Scholar]
  49. Wiesmann C., Hengstenberg W., Schulz G. E. Crystal structures and mechanism of 6-phospho-beta-galactosidase from Lactococcus lactis. J Mol Biol. 1997 Jun 27;269(5):851–860. doi: 10.1006/jmbi.1997.1084. [DOI] [PubMed] [Google Scholar]
  50. Xu G. Y., Ong E., Gilkes N. R., Kilburn D. G., Muhandiram D. R., Harris-Brandts M., Carver J. P., Kay L. E., Harvey T. S. Solution structure of a cellulose-binding domain from Cellulomonas fimi by nuclear magnetic resonance spectroscopy. Biochemistry. 1995 May 30;34(21):6993–7009. [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES