Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1999 Jan;8(1):161–173. doi: 10.1110/ps.8.1.161

Association of partially-folded intermediates of staphylococcal nuclease induces structure and stability.

V N Uversky 1, A S Karnoup 1, R Khurana 1, D J Segel 1, S Doniach 1, A L Fink 1
PMCID: PMC2144103  PMID: 10210194

Abstract

Staphylococcal nuclease forms three different partially-folded intermediates at low pH in the presence of low to moderate concentration of anions, differing in the amount of secondary structure, globularity, stability, and compactness. Although these intermediates are monomeric at low protein concentration (< or =0.25 mg/mL), increasing concentrations of protein result in the formation of dimers and soluble oligomers, ultimately leading to larger insoluble aggregates. Unexpectedly, increasing protein concentration not only led to association, but also to increased structure of the intermediates. The secondary structure, stability, and globularity of the two less-ordered partially-folded intermediates (A1 and A2) were substantially increased upon association, suggesting that aggregation induces structure. An excellent correlation was found between degree of association and amount of structure measured by different techniques, including circular dichroism, fluorescence, Fourier transform infrared spectroscopy (FTIR), and small-angle X-ray scattering. The associated states were also substantially more stable toward urea denaturation than the monomeric forms. A mechanism is proposed, in which the observed association of monomeric intermediates involves intermolecular interactions which correspond to those found intramolecularly in normal folding to the native state.

Full Text

The Full Text of this article is available as a PDF (602.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ackers G. K. Analytical gel chromatography of proteins. Adv Protein Chem. 1970;24:343–446. doi: 10.1016/s0065-3233(08)60245-4. [DOI] [PubMed] [Google Scholar]
  2. Andria G., Taniuchi H., Cone J. L. The specific binding of three fragments of staphylococcal nuclease. J Biol Chem. 1971 Dec 25;246(24):7421–7428. [PubMed] [Google Scholar]
  3. Bennett M. J., Schlunegger M. P., Eisenberg D. 3D domain swapping: a mechanism for oligomer assembly. Protein Sci. 1995 Dec;4(12):2455–2468. doi: 10.1002/pro.5560041202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brems D. N., Plaisted S. M., Kauffman E. W., Havel H. A. Characterization of an associated equilibrium folding intermediate of bovine growth hormone. Biochemistry. 1986 Oct 21;25(21):6539–6543. doi: 10.1021/bi00369a030. [DOI] [PubMed] [Google Scholar]
  5. Clark A. H., Saunderson D. H., Suggett A. Infrared and laser-Raman spectroscopic studies of thermally-induced globular protein gels. Int J Pept Protein Res. 1981 Mar;17(3):353–364. doi: 10.1111/j.1399-3011.1981.tb02002.x. [DOI] [PubMed] [Google Scholar]
  6. Corbett R. J., Roche R. S. Use of high-speed size-exclusion chromatography for the study of protein folding and stability. Biochemistry. 1984 Apr 10;23(8):1888–1894. doi: 10.1021/bi00303a047. [DOI] [PubMed] [Google Scholar]
  7. DeFelippis M. R., Alter L. A., Pekar A. H., Havel H. A., Brems D. N. Evidence for a self-associating equilibrium intermediate during folding of human growth hormone. Biochemistry. 1993 Feb 16;32(6):1555–1562. doi: 10.1021/bi00057a021. [DOI] [PubMed] [Google Scholar]
  8. Eliezer D., Chiba K., Tsuruta H., Doniach S., Hodgson K. O., Kihara H. Evidence of an associative intermediate on the myoglobin refolding pathway. Biophys J. 1993 Aug;65(2):912–917. doi: 10.1016/S0006-3495(93)81124-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fink A. L., Calciano L. J., Goto Y., Kurotsu T., Palleros D. R. Classification of acid denaturation of proteins: intermediates and unfolded states. Biochemistry. 1994 Oct 18;33(41):12504–12511. doi: 10.1021/bi00207a018. [DOI] [PubMed] [Google Scholar]
  10. Fink A. L., Calciano L. J., Goto Y., Nishimura M., Swedberg S. A. Characterization of the stable, acid-induced, molten globule-like state of staphylococcal nuclease. Protein Sci. 1993 Jul;2(7):1155–1160. doi: 10.1002/pro.5560020710. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fink A. L. Compact intermediate states in protein folding. Annu Rev Biophys Biomol Struct. 1995;24:495–522. doi: 10.1146/annurev.bb.24.060195.002431. [DOI] [PubMed] [Google Scholar]
  12. Fink A. L., Oberg K. A., Seshadri S. Discrete intermediates versus molten globule models for protein folding: characterization of partially folded intermediates of apomyoglobin. Fold Des. 1998;3(1):19–25. doi: 10.1016/S1359-0278(98)00005-4. [DOI] [PubMed] [Google Scholar]
  13. Georgiou G., Valax P., Ostermeier M., Horowitz P. M. Folding and aggregation of TEM beta-lactamase: analogies with the formation of inclusion bodies in Escherichia coli. Protein Sci. 1994 Nov;3(11):1953–1960. doi: 10.1002/pro.5560031107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Goto Y., Calciano L. J., Fink A. L. Acid-induced folding of proteins. Proc Natl Acad Sci U S A. 1990 Jan;87(2):573–577. doi: 10.1073/pnas.87.2.573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Goto Y., Fink A. L. Conformational states of beta-lactamase: molten-globule states at acidic and alkaline pH with high salt. Biochemistry. 1989 Feb 7;28(3):945–952. doi: 10.1021/bi00429a004. [DOI] [PubMed] [Google Scholar]
  16. Goto Y., Takahashi N., Fink A. L. Mechanism of acid-induced folding of proteins. Biochemistry. 1990 Apr 10;29(14):3480–3488. doi: 10.1021/bi00466a009. [DOI] [PubMed] [Google Scholar]
  17. Green S. M., Gittis A. G., Meeker A. K., Lattman E. E. One-step evolution of a dimer from a monomeric protein. Nat Struct Biol. 1995 Sep;2(9):746–751. doi: 10.1038/nsb0995-746. [DOI] [PubMed] [Google Scholar]
  18. Havel H. A., Kauffman E. W., Plaisted S. M., Brems D. N. Reversible self-association of bovine growth hormone during equilibrium unfolding. Biochemistry. 1986 Oct 21;25(21):6533–6538. doi: 10.1021/bi00369a029. [DOI] [PubMed] [Google Scholar]
  19. Kataoka M., Hagihara Y., Mihara K., Goto Y. Molten globule of cytochrome c studied by small angle X-ray scattering. J Mol Biol. 1993 Feb 5;229(3):591–596. doi: 10.1006/jmbi.1993.1064. [DOI] [PubMed] [Google Scholar]
  20. London J., Skrzynia C., Goldberg M. E. Renaturation of Escherichia coli tryptophanase after exposure to 8 M urea. Evidence for the existence of nucleation centers. Eur J Biochem. 1974 Sep 1;47(2):409–415. doi: 10.1111/j.1432-1033.1974.tb03707.x. [DOI] [PubMed] [Google Scholar]
  21. Marston F. A. The purification of eukaryotic polypeptides synthesized in Escherichia coli. Biochem J. 1986 Nov 15;240(1):1–12. doi: 10.1042/bj2400001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Oberg K. A., Fink A. L. A new attenuated total reflectance Fourier transform infrared spectroscopy method for the study of proteins in solution. Anal Biochem. 1998 Feb 1;256(1):92–106. doi: 10.1006/abio.1997.2486. [DOI] [PubMed] [Google Scholar]
  23. Oberg K., Chrunyk B. A., Wetzel R., Fink A. L. Nativelike secondary structure in interleukin-1 beta inclusion bodies by attenuated total reflectance FTIR. Biochemistry. 1994 Mar 8;33(9):2628–2634. doi: 10.1021/bi00175a035. [DOI] [PubMed] [Google Scholar]
  24. Parker D. S., Davis A., Taniuchi H. Further study of the conformation of nuclease-(1-126) in relation to intrinsic enzymatic activity. J Biol Chem. 1981 May 10;256(9):4557–4569. [PubMed] [Google Scholar]
  25. Ptitsyn O. B. Molten globule and protein folding. Adv Protein Chem. 1995;47:83–229. doi: 10.1016/s0065-3233(08)60546-x. [DOI] [PubMed] [Google Scholar]
  26. Ptitsyn O. B., Pain R. H., Semisotnov G. V., Zerovnik E., Razgulyaev O. I. Evidence for a molten globule state as a general intermediate in protein folding. FEBS Lett. 1990 Mar 12;262(1):20–24. doi: 10.1016/0014-5793(90)80143-7. [DOI] [PubMed] [Google Scholar]
  27. Semisotnov G. V., Kihara H., Kotova N. V., Kimura K., Amemiya Y., Wakabayashi K., Serdyuk I. N., Timchenko A. A., Chiba K., Nikaido K. Protein globularization during folding. A study by synchrotron small-angle X-ray scattering. J Mol Biol. 1996 Oct 4;262(4):559–574. doi: 10.1006/jmbi.1996.0535. [DOI] [PubMed] [Google Scholar]
  28. Semisotnov G. V., Rodionova N. A., Kutyshenko V. P., Ebert B., Blanck J., Ptitsyn O. B. Sequential mechanism of refolding of carbonic anhydrase B. FEBS Lett. 1987 Nov 16;224(1):9–13. doi: 10.1016/0014-5793(87)80412-x. [DOI] [PubMed] [Google Scholar]
  29. Semisotnov G. V., Rodionova N. A., Razgulyaev O. I., Uversky V. N., Gripas' A. F., Gilmanshin R. I. Study of the "molten globule" intermediate state in protein folding by a hydrophobic fluorescent probe. Biopolymers. 1991 Jan;31(1):119–128. doi: 10.1002/bip.360310111. [DOI] [PubMed] [Google Scholar]
  30. Silow M., Oliveberg M. Transient aggregates in protein folding are easily mistaken for folding intermediates. Proc Natl Acad Sci U S A. 1997 Jun 10;94(12):6084–6086. doi: 10.1073/pnas.94.12.6084. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Stryer L. Fluorescence spectroscopy of proteins. Science. 1968 Nov 1;162(3853):526–533. doi: 10.1126/science.162.3853.526. [DOI] [PubMed] [Google Scholar]
  32. Stryer L. The interaction of a naphthalene dye with apomyoglobin and apohemoglobin. A fluorescent probe of non-polar binding sites. J Mol Biol. 1965 Sep;13(2):482–495. doi: 10.1016/s0022-2836(65)80111-5. [DOI] [PubMed] [Google Scholar]
  33. Tanford C. Protein denaturation. Adv Protein Chem. 1968;23:121–282. doi: 10.1016/s0065-3233(08)60401-5. [DOI] [PubMed] [Google Scholar]
  34. Taniuchi H., Anfinsen C. B. Simultaneous formation of two alternative enzymology active structures by complementation of two overlapping fragments of staphylococcal nuclease. J Biol Chem. 1971 Apr 10;246(7):2291–2301. [PubMed] [Google Scholar]
  35. Taniuchi H., Davies D. R., Anfinsen C. B. A comparison of the x-ray diffraction patterns of crystals of reconstituted nuclease-T and of native staphylococcal nuclease. J Biol Chem. 1972 May 25;247(10):3362–3364. [PubMed] [Google Scholar]
  36. Thomas P. J., Qu B. H., Pedersen P. L. Defective protein folding as a basis of human disease. Trends Biochem Sci. 1995 Nov;20(11):456–459. doi: 10.1016/s0968-0004(00)89100-8. [DOI] [PubMed] [Google Scholar]
  37. Uversky V. N., Karnoup A. S., Segel D. J., Seshadri S., Doniach S., Fink A. L. Anion-induced folding of Staphylococcal nuclease: characterization of multiple equilibrium partially folded intermediates. J Mol Biol. 1998 May 15;278(4):879–894. doi: 10.1006/jmbi.1998.1741. [DOI] [PubMed] [Google Scholar]
  38. Uversky V. N., Ptitsyn O. B. "Partly folded" state, a new equilibrium state of protein molecules: four-state guanidinium chloride-induced unfolding of beta-lactamase at low temperature. Biochemistry. 1994 Mar 15;33(10):2782–2791. doi: 10.1021/bi00176a006. [DOI] [PubMed] [Google Scholar]
  39. Uversky V. N., Ptitsyn O. B. Further evidence on the equilibrium "pre-molten globule state": four-state guanidinium chloride-induced unfolding of carbonic anhydrase B at low temperature. J Mol Biol. 1996 Jan 12;255(1):215–228. doi: 10.1006/jmbi.1996.0018. [DOI] [PubMed] [Google Scholar]
  40. Uversky V. N., Segel D. J., Doniach S., Fink A. L. Association-induced folding of globular proteins. Proc Natl Acad Sci U S A. 1998 May 12;95(10):5480–5483. doi: 10.1073/pnas.95.10.5480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Uversky V. N. Use of fast protein size-exclusion liquid chromatography to study the unfolding of proteins which denature through the molten globule. Biochemistry. 1993 Dec 7;32(48):13288–13298. doi: 10.1021/bi00211a042. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES