Abstract
Electrostatic interactions are often critical for determining the specificity of protein-protein complexes. To study the role of electrostatic interactions for assembly of helical bundles, we previously designed a thermostable, heterotrimeric coiled coil, ABC, in which charged residues were employed to drive preferential association of three distinct, 34-residue helices. To investigate the basis for heterotrimer specificity, we have used multiwavelength anomalous diffraction (MAD) analysis to determine the 1.8 A resolution crystal structure of ABC. The structure shows that ABC forms a heterotrimeric coiled coil with the intended arrangement of parallel chains. Over half of the ion pairs engineered to restrict helix associations were apparent in the experimental electron density map. As seen in other trimeric coiled coils, ABC displays acute knobs-into-holes packing and a buried anion coordinated by core polar amino acids. These interactions validate the design strategy and illustrate how packing and polar contacts determine structural uniqueness.
Full Text
The Full Text of this article is available as a PDF (4.7 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beck K., Dixon T. W., Engel J., Parry D. A. Ionic interactions in the coiled-coil domain of laminin determine the specificity of chain assembly. J Mol Biol. 1993 May 20;231(2):311–323. doi: 10.1006/jmbi.1993.1284. [DOI] [PubMed] [Google Scholar]
- Betz S. F., Bryson J. W., DeGrado W. F. Native-like and structurally characterized designed alpha-helical bundles. Curr Opin Struct Biol. 1995 Aug;5(4):457–463. doi: 10.1016/0959-440x(95)80029-8. [DOI] [PubMed] [Google Scholar]
- Betz S. F., Liebman P. A., DeGrado W. F. De novo design of native proteins: characterization of proteins intended to fold into antiparallel, rop-like, four-helix bundles. Biochemistry. 1997 Mar 4;36(9):2450–2458. doi: 10.1021/bi961704h. [DOI] [PubMed] [Google Scholar]
- Bryson J. W., Betz S. F., Lu H. S., Suich D. J., Zhou H. X., O'Neil K. T., DeGrado W. F. Protein design: a hierarchic approach. Science. 1995 Nov 10;270(5238):935–941. doi: 10.1126/science.270.5238.935. [DOI] [PubMed] [Google Scholar]
- Cohen C., Parry D. A. Alpha-helical coiled coils: more facts and better predictions. Science. 1994 Jan 28;263(5146):488–489. doi: 10.1126/science.8290957. [DOI] [PubMed] [Google Scholar]
- Dahiyat B. I., Mayo S. L. De novo protein design: fully automated sequence selection. Science. 1997 Oct 3;278(5335):82–87. doi: 10.1126/science.278.5335.82. [DOI] [PubMed] [Google Scholar]
- Fass D., Harrison S. C., Kim P. S. Retrovirus envelope domain at 1.7 angstrom resolution. Nat Struct Biol. 1996 May;3(5):465–469. doi: 10.1038/nsb0596-465. [DOI] [PubMed] [Google Scholar]
- Gonzalez L., Jr, Brown R. A., Richardson D., Alber T. Crystal structures of a single coiled-coil peptide in two oligomeric states reveal the basis for structural polymorphism. Nat Struct Biol. 1996 Dec;3(12):1002–1009. doi: 10.1038/nsb1296-1002. [DOI] [PubMed] [Google Scholar]
- Gonzalez L., Jr, Woolfson D. N., Alber T. Buried polar residues and structural specificity in the GCN4 leucine zipper. Nat Struct Biol. 1996 Dec;3(12):1011–1018. doi: 10.1038/nsb1296-1011. [DOI] [PubMed] [Google Scholar]
- Harbury P. B., Kim P. S., Alber T. Crystal structure of an isoleucine-zipper trimer. Nature. 1994 Sep 1;371(6492):80–83. doi: 10.1038/371080a0. [DOI] [PubMed] [Google Scholar]
- Harbury P. B., Plecs J. J., Tidor B., Alber T., Kim P. S. High-resolution protein design with backbone freedom. Science. 1998 Nov 20;282(5393):1462–1467. doi: 10.1126/science.282.5393.1462. [DOI] [PubMed] [Google Scholar]
- Harbury P. B., Zhang T., Kim P. S., Alber T. A switch between two-, three-, and four-stranded coiled coils in GCN4 leucine zipper mutants. Science. 1993 Nov 26;262(5138):1401–1407. doi: 10.1126/science.8248779. [DOI] [PubMed] [Google Scholar]
- Jones T. A., Zou J. Y., Cowan S. W., Kjeldgaard M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A. 1991 Mar 1;47(Pt 2):110–119. doi: 10.1107/s0108767390010224. [DOI] [PubMed] [Google Scholar]
- Kammerer R. A., Antonsson P., Schulthess T., Fauser C., Engel J. Selective chain recognition in the C-terminal alpha-helical coiled-coil region of laminin. J Mol Biol. 1995 Jun 30;250(1):64–73. doi: 10.1006/jmbi.1995.0358. [DOI] [PubMed] [Google Scholar]
- Krylov D., Barchi J., Vinson C. Inter-helical interactions in the leucine zipper coiled coil dimer: pH and salt dependence of coupling energy between charged amino acids. J Mol Biol. 1998 Jun 19;279(4):959–972. doi: 10.1006/jmbi.1998.1762. [DOI] [PubMed] [Google Scholar]
- Krylov D., Mikhailenko I., Vinson C. A thermodynamic scale for leucine zipper stability and dimerization specificity: e and g interhelical interactions. EMBO J. 1994 Jun 15;13(12):2849–2861. doi: 10.1002/j.1460-2075.1994.tb06579.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lavigne P., Sönnichsen F. D., Kay C. M., Hodges R. S. Interhelical salt bridges, coiled-coil stability, and specificity of dimerization. Science. 1996 Feb 23;271(5252):1136–1138. doi: 10.1126/science.271.5252.1136. [DOI] [PubMed] [Google Scholar]
- Lumb K. J., Kim P. S. Measurement of interhelical electrostatic interactions in the GCN4 leucine zipper. Science. 1995 Apr 21;268(5209):436–439. doi: 10.1126/science.7716550. [DOI] [PubMed] [Google Scholar]
- McLachlan A. D., Stewart M. Tropomyosin coiled-coil interactions: evidence for an unstaggered structure. J Mol Biol. 1975 Oct 25;98(2):293–304. doi: 10.1016/s0022-2836(75)80119-7. [DOI] [PubMed] [Google Scholar]
- Nautiyal S., Woolfson D. N., King D. S., Alber T. A designed heterotrimeric coiled coil. Biochemistry. 1995 Sep 19;34(37):11645–11651. doi: 10.1021/bi00037a001. [DOI] [PubMed] [Google Scholar]
- Nomizu M., Utani A., Beck K., Otaka A., Roller P. P., Yamada Y. Mechanism of laminin chain assembly into a triple-stranded coiled-coil structure. Biochemistry. 1996 Mar 5;35(9):2885–2893. doi: 10.1021/bi951555n. [DOI] [PubMed] [Google Scholar]
- O'Shea E. K., Klemm J. D., Kim P. S., Alber T. X-ray structure of the GCN4 leucine zipper, a two-stranded, parallel coiled coil. Science. 1991 Oct 25;254(5031):539–544. doi: 10.1126/science.1948029. [DOI] [PubMed] [Google Scholar]
- O'Shea E. K., Lumb K. J., Kim P. S. Peptide 'Velcro': design of a heterodimeric coiled coil. Curr Biol. 1993 Oct 1;3(10):658–667. doi: 10.1016/0960-9822(93)90063-t. [DOI] [PubMed] [Google Scholar]
- O'Shea E. K., Rutkowski R., Kim P. S. Mechanism of specificity in the Fos-Jun oncoprotein heterodimer. Cell. 1992 Feb 21;68(4):699–708. doi: 10.1016/0092-8674(92)90145-3. [DOI] [PubMed] [Google Scholar]
- Ogihara N. L., Weiss M. S., Degrado W. F., Eisenberg D. The crystal structure of the designed trimeric coiled coil coil-VaLd: implications for engineering crystals and supramolecular assemblies. Protein Sci. 1997 Jan;6(1):80–88. doi: 10.1002/pro.5560060109. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Olive M., Williams S. C., Dezan C., Johnson P. F., Vinson C. Design of a C/EBP-specific, dominant-negative bZIP protein with both inhibitory and gain-of-function properties. J Biol Chem. 1996 Jan 26;271(4):2040–2047. doi: 10.1074/jbc.271.4.2040. [DOI] [PubMed] [Google Scholar]
- Schafmeister C. E., LaPorte S. L., Miercke L. J., Stroud R. M. A designed four helix bundle protein with native-like structure. Nat Struct Biol. 1997 Dec;4(12):1039–1046. doi: 10.1038/nsb1297-1039. [DOI] [PubMed] [Google Scholar]
- Schuermann M., Hunter J. B., Hennig G., Müller R. Non-leucine residues in the leucine repeats of Fos and Jun contribute to the stability and determine the specificity of dimerization. Nucleic Acids Res. 1991 Feb 25;19(4):739–746. doi: 10.1093/nar/19.4.739. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sharma V. A., Logan J., King D. S., White R., Alber T. Sequence-based design of a peptide probe for the APC tumor suppressor protein. Curr Biol. 1998 Jul 2;8(14):823–830. doi: 10.1016/s0960-9822(98)70324-0. [DOI] [PubMed] [Google Scholar]
- Woolfson D. N., Alber T. Predicting oligomerization states of coiled coils. Protein Sci. 1995 Aug;4(8):1596–1607. doi: 10.1002/pro.5560040818. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhou N. E., Kay C. M., Hodges R. S. The net energetic contribution of interhelical electrostatic attractions to coiled-coil stability. Protein Eng. 1994 Nov;7(11):1365–1372. doi: 10.1093/protein/7.11.1365. [DOI] [PubMed] [Google Scholar]
- Zhou N. E., Kay C. M., Hodges R. S. The role of interhelical ionic interactions in controlling protein folding and stability. De novo designed synthetic two-stranded alpha-helical coiled-coils. J Mol Biol. 1994 Apr 8;237(4):500–512. doi: 10.1006/jmbi.1994.1250. [DOI] [PubMed] [Google Scholar]