Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1999 Jan;8(1):215–221. doi: 10.1110/ps.8.1.215

Stereoselectivity of Mucorales lipases toward triradylglycerols--a simple solution to a complex problem.

H Scheib 1, J Pleiss 1, A Kovac 1, F Paltauf 1, R D Schmid 1
PMCID: PMC2144110  PMID: 10210199

Abstract

The lipases from Rhizopus and Rhizomucor are members of the family of Mucorales lipases. Although they display high sequence homology, their stereoselectivity toward triradylglycerols (sn-2 substituted triacylglycerols) varies. Four different triradylglycerols were investigated, which were classified into two groups: flexible substrates with rotatable O'-C1' ether or ester bonds adjacent to C2 of glycerol and rigid substrates with a rigid N'-C1' amide bond or a phenyl ring in sn-2. Although Rhizopus lipase shows opposite stereopreference for flexible and rigid substrates (hydrolysis in sn-1 and sn-3, respectively), Rhizomucor lipase hydrolyzes both groups of triradylglycerols preferably in sn-1. To explain these experimental observations, computer-aided molecular modeling was applied to study the molecular basis of stereoselectivity. A generalized model for both lipases of the Mucorales family highlights the residues mediating stereoselectivity: (1) L258, the C-terminal neighbor of the catalytic histidine, and (2) G266, which is located in a loop contacting the glycerol backbone of a bound substrate. Interactions with triradylglycerol substrates are dominated by van der Waals contacts. Stereoselectivity can be predicted by analyzing the value of a single substrate torsion angle that discriminates between sn-1 and sn-3 stereopreference for all substrates and lipases investigated here. This simple model can be easily applied in enzyme and substrate engineering to predict Mucorales lipase variants and synthetic substrates with desired stereoselectivity.

Full Text

The Full Text of this article is available as a PDF (322.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Appel R. D., Bairoch A., Hochstrasser D. F. A new generation of information retrieval tools for biologists: the example of the ExPASy WWW server. Trends Biochem Sci. 1994 Jun;19(6):258–260. doi: 10.1016/0968-0004(94)90153-8. [DOI] [PubMed] [Google Scholar]
  2. Beer H. D., Wohlfahrt G., McCarthy J. E., Schomburg D., Schmid R. D. Analysis of the catalytic mechanism of a fungal lipase using computer-aided design and structural mutants. Protein Eng. 1996 Jun;9(6):507–517. doi: 10.1093/protein/9.6.507. [DOI] [PubMed] [Google Scholar]
  3. Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
  4. Brzozowski A. M., Derewenda U., Derewenda Z. S., Dodson G. G., Lawson D. M., Turkenburg J. P., Bjorkling F., Huge-Jensen B., Patkar S. A., Thim L. A model for interfacial activation in lipases from the structure of a fungal lipase-inhibitor complex. Nature. 1991 Jun 6;351(6326):491–494. doi: 10.1038/351491a0. [DOI] [PubMed] [Google Scholar]
  5. Derewenda U., Brzozowski A. M., Lawson D. M., Derewenda Z. S. Catalysis at the interface: the anatomy of a conformational change in a triglyceride lipase. Biochemistry. 1992 Feb 11;31(5):1532–1541. doi: 10.1021/bi00120a034. [DOI] [PubMed] [Google Scholar]
  6. Derewenda U., Swenson L., Wei Y., Green R., Kobos P. M., Joerger R., Haas M. J., Derewenda Z. S. Conformational lability of lipases observed in the absence of an oil-water interface: crystallographic studies of enzymes from the fungi Humicola lanuginosa and Rhizopus delemar. J Lipid Res. 1994 Mar;35(3):524–534. [PubMed] [Google Scholar]
  7. Goodford P. J. A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. J Med Chem. 1985 Jul;28(7):849–857. doi: 10.1021/jm00145a002. [DOI] [PubMed] [Google Scholar]
  8. Higgins D. G., Thompson J. D., Gibson T. J. Using CLUSTAL for multiple sequence alignments. Methods Enzymol. 1996;266:383–402. doi: 10.1016/s0076-6879(96)66024-8. [DOI] [PubMed] [Google Scholar]
  9. Kohno M., Funatsu J., Mikami B., Kugimiya W., Matsuo T., Morita Y. The crystal structure of lipase II from Rhizopus niveus at 2.2 A resolution. J Biochem. 1996 Sep;120(3):505–510. doi: 10.1093/oxfordjournals.jbchem.a021442. [DOI] [PubMed] [Google Scholar]
  10. Kovac A., Stadler P., Haalck L., Spener F., Paltauf F. Hydrolysis and esterification of acylglycerols and analogs in aqueous medium catalyzed by microbial lipases. Biochim Biophys Acta. 1996 May 31;1301(1-2):57–66. doi: 10.1016/0005-2760(96)00018-5. [DOI] [PubMed] [Google Scholar]
  11. Martinelle M., Holmquist M., Clausen I. G., Patkar S., Svendsen A., Hult K. The role of Glu87 and Trp89 in the lid of Humicola lanuginosa lipase. Protein Eng. 1996 Jun;9(6):519–524. doi: 10.1093/protein/9.6.519. [DOI] [PubMed] [Google Scholar]
  12. Rogalska E., Cudrey C., Ferrato F., Verger R. Stereoselective hydrolysis of triglycerides by animal and microbial lipases. Chirality. 1993;5(1):24–30. doi: 10.1002/chir.530050106. [DOI] [PubMed] [Google Scholar]
  13. Scheib H., Pleiss J., Stadler P., Kovac A., Potthoff A. P., Haalck L., Spener F., Paltauf F., Schmid R. D. Rational design of Rhizopus oryzae lipase with modified stereoselectivity toward triradylglycerols. Protein Eng. 1998 Aug;11(8):675–682. doi: 10.1093/protein/11.8.675. [DOI] [PubMed] [Google Scholar]
  14. Stadler P., Kovac A., Haalck L., Spener F., Paltauf F. Stereoselectivity of microbial lipases. The substitution at position sn-2 of triacylglycerol analogs influences the stereoselectivity of different microbial lipases. Eur J Biochem. 1995 Jan 15;227(1-2):335–343. doi: 10.1111/j.1432-1033.1995.tb20394.x. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES