Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1999 Jan;8(1):137–146. doi: 10.1110/ps.8.1.137

Relationships within the aldehyde dehydrogenase extended family.

J Perozich 1, H Nicholas 1, B C Wang 1, R Lindahl 1, J Hempel 1
PMCID: PMC2144113  PMID: 10210192

Abstract

One hundred-forty-five full-length aldehyde dehydrogenase-related sequences were aligned to determine relationships within the aldehyde dehydrogenase (ALDH) extended family. The alignment reveals only four invariant residues: two glycines, a phenylalanine involved in NAD binding, and a glutamic acid that coordinates the nicotinamide ribose in certain E-NAD binary complex crystal structures, but which may also serve as a general base for the catalytic reaction. The cysteine that provides the catalytic thiol and its closest neighbor in space, an asparagine residue, are conserved in all ALDHs with demonstrated dehydrogenase activity. Sixteen residues are conserved in at least 95% of the sequences; 12 of these cluster into seven sequence motifs conserved in almost all ALDHs. These motifs cluster around the active site of the enzyme. Phylogenetic analysis of these ALDHs indicates at least 13 ALDH families, most of which have previously been identified but not grouped separately by alignment. ALDHs cluster into two main trunks of the phylogenetic tree. The largest, the "Class 3" trunk, contains mostly substrate-specific ALDH families, as well as the class 3 ALDH family itself. The other trunk, the "Class 1/2" trunk, contains mostly variable substrate ALDH families, including the class 1 and 2 ALDH families. Divergence of the substrate-specific ALDHs occurred earlier than the division between ALDHs with broad substrate specificities. A site on the World Wide Web has also been devoted to this alignment project.

Full Text

The Full Text of this article is available as a PDF (720.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abriola D. P., Fields R., Stein S., MacKerell A. D., Jr, Pietruszko R. Active site of human liver aldehyde dehydrogenase. Biochemistry. 1987 Sep 8;26(18):5679–5684. doi: 10.1021/bi00392a015. [DOI] [PubMed] [Google Scholar]
  2. Achatz G., Oberkofler H., Lechenauer E., Simon B., Unger A., Kandler D., Ebner C., Prillinger H., Kraft D., Breitenbach M. Molecular cloning of major and minor allergens of Alternaria alternata and Cladosporium herbarum. Mol Immunol. 1995 Feb;32(3):213–227. doi: 10.1016/0161-5890(94)00108-d. [DOI] [PubMed] [Google Scholar]
  3. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bailey T. L., Elkan C. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol. 1994;2:28–36. [PubMed] [Google Scholar]
  5. Brocchieri L., Karlin S. A symmetric-iterated multiple alignment of protein sequences. J Mol Biol. 1998 Feb 13;276(1):249–264. doi: 10.1006/jmbi.1997.1527. [DOI] [PubMed] [Google Scholar]
  6. Chambliss K. L., Caudle D. L., Hinson D. D., Moomaw C. R., Slaughter C. A., Jakobs C., Gibson K. M. Molecular cloning of the mature NAD(+)-dependent succinic semialdehyde dehydrogenase from rat and human. cDNA isolation, evolutionary homology, and tissue expression. J Biol Chem. 1995 Jan 6;270(1):461–467. doi: 10.1074/jbc.270.1.461. [DOI] [PubMed] [Google Scholar]
  7. Cook R. J., Lloyd R. S., Wagner C. Isolation and characterization of cDNA clones for rat liver 10-formyltetrahydrofolate dehydrogenase. J Biol Chem. 1991 Mar 15;266(8):4965–4973. [PubMed] [Google Scholar]
  8. Dayhoff M. O., Barker W. C., Hunt L. T. Establishing homologies in protein sequences. Methods Enzymol. 1983;91:524–545. doi: 10.1016/s0076-6879(83)91049-2. [DOI] [PubMed] [Google Scholar]
  9. Denome S. A., Stanley D. C., Olson E. S., Young K. D. Metabolism of dibenzothiophene and naphthalene in Pseudomonas strains: complete DNA sequence of an upper naphthalene catabolic pathway. J Bacteriol. 1993 Nov;175(21):6890–6901. doi: 10.1128/jb.175.21.6890-6901.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gribskov M., Lüthy R., Eisenberg D. Profile analysis. Methods Enzymol. 1990;183:146–159. doi: 10.1016/0076-6879(90)83011-w. [DOI] [PubMed] [Google Scholar]
  11. Guerrero F. D., Jones J. T., Mullet J. E. Turgor-responsive gene transcription and RNA levels increase rapidly when pea shoots are wilted. Sequence and expression of three inducible genes. Plant Mol Biol. 1990 Jul;15(1):11–26. doi: 10.1007/BF00017720. [DOI] [PubMed] [Google Scholar]
  12. Habenicht A., Hellman U., Cerff R. Non-phosphorylating GAPDH of higher plants is a member of the aldehyde dehydrogenase superfamily with no sequence homology to phosphorylating GAPDH. J Mol Biol. 1994 Mar 18;237(1):165–171. doi: 10.1006/jmbi.1994.1217. [DOI] [PubMed] [Google Scholar]
  13. Hempel J., Harper K., Lindahl R. Inducible (class 3) aldehyde dehydrogenase from rat hepatocellular carcinoma and 2,3,7,8-tetrachlorodibenzo-p-dioxin-treated liver: distant relationship to the class 1 and 2 enzymes from mammalian liver cytosol/mitochondria. Biochemistry. 1989 Feb 7;28(3):1160–1167. doi: 10.1021/bi00429a034. [DOI] [PubMed] [Google Scholar]
  14. Hempel J., Liu Z. J., Perozich J., Rose J., Lindahl R., Wang B. C. Conserved residues in the aldehyde dehydrogenase family. Locations in the class 3 tertiary structure. Adv Exp Med Biol. 1997;414:9–13. doi: 10.1007/978-1-4615-5871-2_2. [DOI] [PubMed] [Google Scholar]
  15. Hempel J., Nicholas H., Lindahl R. Aldehyde dehydrogenases: widespread structural and functional diversity within a shared framework. Protein Sci. 1993 Nov;2(11):1890–1900. doi: 10.1002/pro.5560021111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hempel J., von Bahr-Lindström H., Jörnvall H. Aldehyde dehydrogenase from human liver. Primary structure of the cytoplasmic isoenzyme. Eur J Biochem. 1984 May 15;141(1):21–35. doi: 10.1111/j.1432-1033.1984.tb08150.x. [DOI] [PubMed] [Google Scholar]
  17. Hsu L. C., Chang W. C., Yoshida A. Human aldehyde dehydrogenase genes, ALDH7 and ALDH8: genomic organization and gene structure comparison. Gene. 1997 Apr 11;189(1):89–94. doi: 10.1016/s0378-1119(96)00839-6. [DOI] [PubMed] [Google Scholar]
  18. Inoue J., Shaw J. P., Rekik M., Harayama S. Overlapping substrate specificities of benzaldehyde dehydrogenase (the xylC gene product) and 2-hydroxymuconic semialdehyde dehydrogenase (the xylG gene product) encoded by TOL plasmid pWW0 of Pseudomonas putida. J Bacteriol. 1995 Mar;177(5):1196–1201. doi: 10.1128/jb.177.5.1196-1201.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Johansson K., El-Ahmad M., Ramaswamy S., Hjelmqvist L., Jörnvall H., Eklund H. Structure of betaine aldehyde dehydrogenase at 2.1 A resolution. Protein Sci. 1998 Oct;7(10):2106–2117. doi: 10.1002/pro.5560071007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Jörnvall H. Differences between alcohol dehydrogenases. Structural properties and evolutionary aspects. Eur J Biochem. 1977 Feb;72(3):443–452. doi: 10.1111/j.1432-1033.1977.tb11268.x. [DOI] [PubMed] [Google Scholar]
  21. Kedishvili N. Y., Popov K. M., Rougraff P. M., Zhao Y., Crabb D. W., Harris R. A. CoA-dependent methylmalonate-semialdehyde dehydrogenase, a unique member of the aldehyde dehydrogenase superfamily. cDNA cloning, evolutionary relationships, and tissue distribution. J Biol Chem. 1992 Sep 25;267(27):19724–19729. [PubMed] [Google Scholar]
  22. Krupenko S. A., Wagner C., Cook R. J. Expression, purification, and properties of the aldehyde dehydrogenase homologous carboxyl-terminal domain of rat 10-formyltetrahydrofolate dehydrogenase. J Biol Chem. 1997 Apr 11;272(15):10266–10272. doi: 10.1074/jbc.272.15.10266. [DOI] [PubMed] [Google Scholar]
  23. Lesk A. M. NAD-binding domains of dehydrogenases. Curr Opin Struct Biol. 1995 Dec;5(6):775–783. doi: 10.1016/0959-440x(95)80010-7. [DOI] [PubMed] [Google Scholar]
  24. Lindahl R. Aldehyde dehydrogenases and their role in carcinogenesis. Crit Rev Biochem Mol Biol. 1992;27(4-5):283–335. doi: 10.3109/10409239209082565. [DOI] [PubMed] [Google Scholar]
  25. Ling M., Allen S. W., Wood J. M. Sequence analysis identifies the proline dehydrogenase and delta 1-pyrroline-5-carboxylate dehydrogenase domains of the multifunctional Escherichia coli PutA protein. J Mol Biol. 1994 Nov 11;243(5):950–956. doi: 10.1006/jmbi.1994.1696. [DOI] [PubMed] [Google Scholar]
  26. Liu Z. J., Sun Y. J., Rose J., Chung Y. J., Hsiao C. D., Chang W. R., Kuo I., Perozich J., Lindahl R., Hempel J. The first structure of an aldehyde dehydrogenase reveals novel interactions between NAD and the Rossmann fold. Nat Struct Biol. 1997 Apr;4(4):317–326. doi: 10.1038/nsb0497-317. [DOI] [PubMed] [Google Scholar]
  27. Nagy I., Schoofs G., Compernolle F., Proost P., Vanderleyden J., de Mot R. Degradation of the thiocarbamate herbicide EPTC (S-ethyl dipropylcarbamothioate) and biosafening by Rhodococcus sp. strain NI86/21 involve an inducible cytochrome P-450 system and aldehyde dehydrogenase. J Bacteriol. 1995 Feb;177(3):676–687. doi: 10.1128/jb.177.3.676-687.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Ni L., Sheikh S., Weiner H. Involvement of glutamate 399 and lysine 192 in the mechanism of human liver mitochondrial aldehyde dehydrogenase. J Biol Chem. 1997 Jul 25;272(30):18823–18826. doi: 10.1074/jbc.272.30.18823. [DOI] [PubMed] [Google Scholar]
  29. Notredame C., Higgins D. G. SAGA: sequence alignment by genetic algorithm. Nucleic Acids Res. 1996 Apr 15;24(8):1515–1524. doi: 10.1093/nar/24.8.1515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Parsot C., Mekalanos J. J. Expression of the Vibrio cholerae gene encoding aldehyde dehydrogenase is under control of ToxR, the cholera toxin transcriptional activator. J Bacteriol. 1991 May;173(9):2842–2851. doi: 10.1128/jb.173.9.2842-2851.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Persson B., Krook M., Jörnvall H. Characteristics of short-chain alcohol dehydrogenases and related enzymes. Eur J Biochem. 1991 Sep 1;200(2):537–543. doi: 10.1111/j.1432-1033.1991.tb16215.x. [DOI] [PubMed] [Google Scholar]
  32. Pietruszko R., Kikonyogo A., Chern M. K., Izaguirre G. Human aldehyde dehydrogenase E3. Further characterization. Adv Exp Med Biol. 1997;414:243–252. doi: 10.1007/978-1-4615-5871-2_28. [DOI] [PubMed] [Google Scholar]
  33. Priefert H., Krüger N., Jendrossek D., Schmidt B., Steinbüchel A. Identification and molecular characterization of the gene coding for acetaldehyde dehydrogenase II (acoD) of Alcaligenes eutrophus. J Bacteriol. 1992 Feb;174(3):899–907. doi: 10.1128/jb.174.3.899-907.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Priefert H., Rabenhorst J., Steinbüchel A. Molecular characterization of genes of Pseudomonas sp. strain HR199 involved in bioconversion of vanillin to protocatechuate. J Bacteriol. 1997 Apr;179(8):2595–2607. doi: 10.1128/jb.179.8.2595-2607.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Sayle R. A., Milner-White E. J. RASMOL: biomolecular graphics for all. Trends Biochem Sci. 1995 Sep;20(9):374–374. doi: 10.1016/s0968-0004(00)89080-5. [DOI] [PubMed] [Google Scholar]
  36. Sofia H. J., Burland V., Daniels D. L., Plunkett G., 3rd, Blattner F. R. Analysis of the Escherichia coli genome. V. DNA sequence of the region from 76.0 to 81.5 minutes. Nucleic Acids Res. 1994 Jul 11;22(13):2576–2586. doi: 10.1093/nar/22.13.2576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Steinmetz C. G., Xie P., Weiner H., Hurley T. D. Structure of mitochondrial aldehyde dehydrogenase: the genetic component of ethanol aversion. Structure. 1997 May 15;5(5):701–711. doi: 10.1016/s0969-2126(97)00224-4. [DOI] [PubMed] [Google Scholar]
  38. Stroeher V. L., Boothe J. G., Good A. G. Molecular cloning and expression of a turgor-responsive gene in Brassica napus. Plant Mol Biol. 1995 Feb;27(3):541–551. doi: 10.1007/BF00019320. [DOI] [PubMed] [Google Scholar]
  39. Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Wang X., Weiner H. Involvement of glutamate 268 in the active site of human liver mitochondrial (class 2) aldehyde dehydrogenase as probed by site-directed mutagenesis. Biochemistry. 1995 Jan 10;34(1):237–243. doi: 10.1021/bi00001a028. [DOI] [PubMed] [Google Scholar]
  41. Xu J., Johnson R. C. aldB, an RpoS-dependent gene in Escherichia coli encoding an aldehyde dehydrogenase that is repressed by Fis and activated by Crp. J Bacteriol. 1995 Jun;177(11):3166–3175. doi: 10.1128/jb.177.11.3166-3175.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Yoshida A., Rzhetsky A., Hsu L. C., Chang C. Human aldehyde dehydrogenase gene family. Eur J Biochem. 1998 Feb 1;251(3):549–557. doi: 10.1046/j.1432-1327.1998.2510549.x. [DOI] [PubMed] [Google Scholar]
  43. Zinovieva R. D., Tomarev S. I., Piatigorsky J. Aldehyde dehydrogenase-derived omega-crystallins of squid and octopus. Specialization for lens expression. J Biol Chem. 1993 May 25;268(15):11449–11455. [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES