Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1999 Jan;8(1):65–74. doi: 10.1110/ps.8.1.65

Interaction of thioredoxins with target proteins: role of particular structural elements and electrostatic properties of thioredoxins in their interplay with 2-oxoacid dehydrogenase complexes.

V Bunik 1, G Raddatz 1, S Lemaire 1, Y Meyer 1, J P Jacquot 1, H Bisswanger 1
PMCID: PMC2144114  PMID: 10210184

Abstract

The thioredoxin action upon the 2-oxoacid dehydrogenase complexes is investigated by using different thioredoxins, both wild-type and mutated. The attacking cysteine residue of thioredoxin is established to be essential for the thioredoxin-dependent activation of the complexes. Mutation of the buried cysteine residue to serine is not crucial for the activation, but prevents inhibition of the complexes, exhibited by the Clamydomonas reinhardtii thioredoxin m disulfide. Site-directed mutagenesis of D26, W31, F/W12, and Y/A70 (the Escherichia coli thioredoxin numbering is employed for all the thioredoxins studied) indicates that both the active site and remote residues of thioredoxin are involved in its interplay with the 2-oxoacid dehydrogenase complexes. Sequences of 11 thioredoxin species tested biochemically are aligned. The thioredoxin residues at the contact between the alpha3/3(10) and alpha1 helices, the length of the alpha1 helix and the charges in the alpha2-beta3 and beta4-beta5 linkers are found to correlate with the protein influence on the 2-oxoacid dehydrogenase complexes (the secondary structural elements of thioredoxin are defined according to Eklund H et al., 1991, Proteins 11:13-28). The distribution of the charges on the surface of the thioredoxin molecules is analyzed. The analysis reveals the species specific polarization of the thioredoxin active site surroundings, which corresponds to the efficiency of the thioredoxin interplay with the 2-oxoacid dehydrogenase systems. The most effective mitochondrial thioredoxin is characterized by the strongest polarization of this area and the highest value of the electrostatic dipole vector of the molecule. Not only the magnitude, but also the orientation of the dipole vector show correlation with the thioredoxin action. The dipole direction is found to be significantly influenced by the charges of the residues 13/14, 51, and 83/85, which distinguish the activating and inhibiting thioredoxin disulfides.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arscott L. D., Gromer S., Schirmer R. H., Becker K., Williams C. H., Jr The mechanism of thioredoxin reductase from human placenta is similar to the mechanisms of lipoamide dehydrogenase and glutathione reductase and is distinct from the mechanism of thioredoxin reductase from Escherichia coli. Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):3621–3626. doi: 10.1073/pnas.94.8.3621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
  3. Birkett D. J., Price N. C., Radda G. K., Salmon A. G. The reactivity of SH groups with a fluorogenic reagent. FEBS Lett. 1970 Feb 25;6(4):346–348. doi: 10.1016/0014-5793(70)80095-3. [DOI] [PubMed] [Google Scholar]
  4. Bodenstein-Lang J., Buch A., Follmann H. Animal and plant mitochondria contain specific thioredoxins. FEBS Lett. 1989 Nov 20;258(1):22–26. doi: 10.1016/0014-5793(89)81606-0. [DOI] [PubMed] [Google Scholar]
  5. Bunik V., Follmann H., Bisswanger H. Activation of mitochondrial 2-oxoacid dehydrogenases by thioredoxin. Biol Chem. 1997 Oct;378(10):1125–1130. doi: 10.1515/bchm.1997.378.10.1125. [DOI] [PubMed] [Google Scholar]
  6. Bunik V., Follmann H. Thioredoxin reduction dependent on alpha-ketoacid oxidation by alpha-ketoacid dehydrogenase complexes. FEBS Lett. 1993 Dec 27;336(2):197–200. doi: 10.1016/0014-5793(93)80801-z. [DOI] [PubMed] [Google Scholar]
  7. Bunik V., Shoubnikova A., Bisswanger H., Follmann H. Characterization of thioredoxins by sodium dodecyl sulfate-slab gel electrophoresis and high performance capillary electrophoresis. Electrophoresis. 1997 May;18(5):762–766. doi: 10.1002/elps.1150180517. [DOI] [PubMed] [Google Scholar]
  8. De Pascalis A. R., Jelesarov I., Ackermann F., Koppenol W. H., Hirasawa M., Knaff D. B., Bosshard H. R. Binding of ferredoxin to ferredoxin:NADP+ oxidoreductase: the role of carboxyl groups, electrostatic surface potential, and molecular dipole moment. Protein Sci. 1993 Jul;2(7):1126–1135. doi: 10.1002/pro.5560020707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Demchuk E., Mueller T., Oschkinat H., Sebald W., Wade R. C. Receptor binding properties of four-helix-bundle growth factors deduced from electrostatic analysis. Protein Sci. 1994 Jun;3(6):920–935. doi: 10.1002/pro.5560030607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Eklund H., Gleason F. K., Holmgren A. Structural and functional relations among thioredoxins of different species. Proteins. 1991;11(1):13–28. doi: 10.1002/prot.340110103. [DOI] [PubMed] [Google Scholar]
  11. Gane P. J., Freedman R. B., Warwicker J. A molecular model for the redox potential difference between thioredoxin and DsbA, based on electrostatics calculations. J Mol Biol. 1995 Jun 2;249(2):376–387. doi: 10.1006/jmbi.1995.0303. [DOI] [PubMed] [Google Scholar]
  12. Gasdaska J. R., Kirkpatrick D. L., Montfort W., Kuperus M., Hill S. R., Berggren M., Powis G. Oxidative inactivation of thioredoxin as a cellular growth factor and protection by a Cys73-->Ser mutation. Biochem Pharmacol. 1996 Dec 13;52(11):1741–1747. doi: 10.1016/s0006-2952(96)00595-3. [DOI] [PubMed] [Google Scholar]
  13. Gasdaska P. Y., Gasdaska J. R., Cochran S., Powis G. Cloning and sequencing of a human thioredoxin reductase. FEBS Lett. 1995 Oct 2;373(1):5–9. doi: 10.1016/0014-5793(95)01003-w. [DOI] [PubMed] [Google Scholar]
  14. Hoffman B. J., Broadwater J. A., Johnson P., Harper J., Fox B. G., Kenealy W. R. Lactose fed-batch overexpression of recombinant metalloproteins in Escherichia coli BL21 (DE3): process control yielding high levels of metal-incorporated, soluble protein. Protein Expr Purif. 1995 Oct;6(5):646–654. doi: 10.1006/prep.1995.1085. [DOI] [PubMed] [Google Scholar]
  15. Holmgren A. Thioredoxin catalyzes the reduction of insulin disulfides by dithiothreitol and dihydrolipoamide. J Biol Chem. 1979 Oct 10;254(19):9627–9632. [PubMed] [Google Scholar]
  16. Holmgren A. Thioredoxin. 6. The amino acid sequence of the protein from escherichia coli B. Eur J Biochem. 1968 Dec 5;6(4):475–484. doi: 10.1111/j.1432-1033.1968.tb00470.x. [DOI] [PubMed] [Google Scholar]
  17. Honig B., Nicholls A. Classical electrostatics in biology and chemistry. Science. 1995 May 26;268(5214):1144–1149. doi: 10.1126/science.7761829. [DOI] [PubMed] [Google Scholar]
  18. Jacquot J. P., Lopez-Jaramillo J., Miginiac-Maslow M., Lemaire S., Cherfils J., Chueca A., Lopez-Gorge J. Cysteine-153 is required for redox regulation of pea chloroplast fructose-1,6-bisphosphatase. FEBS Lett. 1997 Jan 20;401(2-3):143–147. doi: 10.1016/s0014-5793(96)01459-7. [DOI] [PubMed] [Google Scholar]
  19. Jacquot J. P., Stein M., Hodges M., Miginiac-Maslow M. PCR cloning of a nucleotidic sequence coding for the mature part of Chlamydomonas reinhardtii thioredoxin Ch2. Nucleic Acids Res. 1992 Feb 11;20(3):617–617. doi: 10.1093/nar/20.3.617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Jacquot J. P., Stein M., Suzuki A., Liottet S., Sandoz G., Miginiac-Maslow M. Residue Glu-91 of Chlamydomonas reinhardtii ferredoxin is essential for electron transfer to ferredoxin-thioredoxin reductase. FEBS Lett. 1997 Jan 6;400(3):293–296. doi: 10.1016/s0014-5793(96)01407-x. [DOI] [PubMed] [Google Scholar]
  21. Janin J. The kinetics of protein-protein recognition. Proteins. 1997 Jun;28(2):153–161. doi: 10.1002/(sici)1097-0134(199706)28:2<153::aid-prot4>3.0.co;2-g. [DOI] [PubMed] [Google Scholar]
  22. Katti S. K., LeMaster D. M., Eklund H. Crystal structure of thioredoxin from Escherichia coli at 1.68 A resolution. J Mol Biol. 1990 Mar 5;212(1):167–184. doi: 10.1016/0022-2836(90)90313-B. [DOI] [PubMed] [Google Scholar]
  23. Lepiniec L., Hodges M., Gadal P., Crétin C. Isolation, characterization and nucleotide sequence of a full-length pea cDNA encoding thioredoxin-f. Plant Mol Biol. 1992 Mar;18(5):1023–1025. doi: 10.1007/BF00019224. [DOI] [PubMed] [Google Scholar]
  24. López Jaramillo J., Chueca A., Sahrawy M., Hermoso R., Lázaro J. J., Prado F. E., López Gorgé J. Cloning and sequencing of a pea cDNA fragment coding for thioredoxin m. Plant Physiol. 1994 Jul;105(3):1021–1022. doi: 10.1104/pp.105.3.1021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mittard V., Blackledge M. J., Stein M., Jacquot J. P., Marion D., Lancelin J. M. NMR solution structure of an oxidised thioredoxin h from the eukaryotic green alga Chlamydomonas reinhardtii. Eur J Biochem. 1997 Jan 15;243(1-2):374–383. doi: 10.1111/j.1432-1033.1997.0374a.x. [DOI] [PubMed] [Google Scholar]
  26. Qin J., Clore G. M., Kennedy W. M., Huth J. R., Gronenborn A. M. Solution structure of human thioredoxin in a mixed disulfide intermediate complex with its target peptide from the transcription factor NF kappa B. Structure. 1995 Mar 15;3(3):289–297. doi: 10.1016/s0969-2126(01)00159-9. [DOI] [PubMed] [Google Scholar]
  27. Rivera-Madrid R., Mestres D., Marinho P., Jacquot J. P., Decottignies P., Miginiac-Maslow M., Meyer Y. Evidence for five divergent thioredoxin h sequences in Arabidopsis thaliana. Proc Natl Acad Sci U S A. 1995 Jun 6;92(12):5620–5624. doi: 10.1073/pnas.92.12.5620. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Saarinen M., Gleason F. K., Eklund H. Crystal structure of thioredoxin-2 from Anabaena. Structure. 1995 Oct 15;3(10):1097–1108. doi: 10.1016/s0969-2126(01)00245-3. [DOI] [PubMed] [Google Scholar]
  29. Spyrou G., Enmark E., Miranda-Vizuete A., Gustafsson J. Cloning and expression of a novel mammalian thioredoxin. J Biol Chem. 1997 Jan 31;272(5):2936–2941. doi: 10.1074/jbc.272.5.2936. [DOI] [PubMed] [Google Scholar]
  30. Stanley C. J., Perham R. N. Purification of 2-oxo acid dehydrogenase multienzyme complexes from ox heart by a new method. Biochem J. 1980 Oct 1;191(1):147–154. doi: 10.1042/bj1910147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Stein M., Jacquot J. P., Jeannette E., Decottignies P., Hodges M., Lancelin J. M., Mittard V., Schmitter J. M., Miginiac-Maslow M. Chlamydomonas reinhardtii thioredoxins: structure of the genes coding for the chloroplastic m and cytosolic h isoforms; expression in Escherichia coli of the recombinant proteins, purification and biochemical properties. Plant Mol Biol. 1995 Jun;28(3):487–503. doi: 10.1007/BF00020396. [DOI] [PubMed] [Google Scholar]
  32. Williams C. H., Jr, Allison N., Russell G. C., Prongay A. J., Arscott L. D., Datta S., Sahlman L., Guest J. R. Properties of lipoamide dehydrogenase and thioredoxin reductase from Escherichia coli altered by site-directed mutagenesis. Ann N Y Acad Sci. 1989;573:55–65. doi: 10.1111/j.1749-6632.1989.tb14986.x. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES