Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1999 Oct;8(10):2001–2009. doi: 10.1110/ps.8.10.2001

Active site specificity of plasmepsin II.

J Westling 1, P Cipullo 1, S H Hung 1, H Saft 1, J B Dame 1, B M Dunn 1
PMCID: PMC2144121  PMID: 10548045

Abstract

Members of the aspartic proteinase family of enzymes have very similar three-dimensional structures and catalytic mechanisms. Each, however, has unique substrate specificity. These distinctions arise from variations in amino acid residues that line the active site subsites and interact with the side chains of the amino acids of the peptides that bind to the active site. To understand the unique binding preferences of plasmepsin II, an enzyme of the aspartic proteinase class from the malaria parasite, Plasmodium falciparum, chromogenic octapeptides having systematic substitutions at various positions in the sequence were analyzed. This enabled the design of new, improved substrates for this enzyme (Lys-Pro-Ile-Leu-Phe*Nph-Ala/Glu-Leu-Lys, where * indicates the cleavage point). Additionally, the crystal structure of plasmepsin II was analyzed to explain the binding characteristics. Specific amino acids (Met13, Ser77, and Ile287) that were suspected of contributing to active site binding and specificity were chosen for site-directed mutagenesis experiments. The Met13Glu and Ile287Glu single mutants and the Met13Glu/Ile287Glu double mutant gain the ability to cleave substrates containing Lys residues.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abad-Zapatero C., Rydel T. J., Erickson J. Revised 2.3 A structure of porcine pepsin: evidence for a flexible subdomain. Proteins. 1990;8(1):62–81. doi: 10.1002/prot.340080109. [DOI] [PubMed] [Google Scholar]
  2. Balbaa M., Cunningham A., Hofmann T. Secondary substrate binding in aspartic proteinases: contributions of subsites S3 and S'2 to kcat. Arch Biochem Biophys. 1993 Nov 1;306(2):297–303. doi: 10.1006/abbi.1993.1515. [DOI] [PubMed] [Google Scholar]
  3. Baldwin E. T., Bhat T. N., Gulnik S., Hosur M. V., Sowder R. C., 2nd, Cachau R. E., Collins J., Silva A. M., Erickson J. W. Crystal structures of native and inhibited forms of human cathepsin D: implications for lysosomal targeting and drug design. Proc Natl Acad Sci U S A. 1993 Jul 15;90(14):6796–6800. doi: 10.1073/pnas.90.14.6796. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Beyer B. M., Dunn B. M. Prime region subsite specificity characterization of human cathepsin D: the dominant role of position 128. Protein Sci. 1998 Jan;7(1):88–95. doi: 10.1002/pro.5560070109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Beyer B. M., Dunn B. M. Self-activation of recombinant human lysosomal procathepsin D at a newly engineered cleavage junction, "short" pseudocathepsin D. J Biol Chem. 1996 Jun 28;271(26):15590–15596. doi: 10.1074/jbc.271.26.15590. [DOI] [PubMed] [Google Scholar]
  6. Dame J. B., Reddy G. R., Yowell C. A., Dunn B. M., Kay J., Berry C. Sequence, expression and modeled structure of an aspartic proteinase from the human malaria parasite Plasmodium falciparum. Mol Biochem Parasitol. 1994 Apr;64(2):177–190. doi: 10.1016/0166-6851(94)90024-8. [DOI] [PubMed] [Google Scholar]
  7. Dunn B. M., Scarborough P. E., Davenport R., Swietnicki W. Analysis of proteinase specificity by studies of peptide substrates. The use of UV and fluorescence spectroscopy to quantitate rates of enzymatic cleavage. Methods Mol Biol. 1994;36:225–243. doi: 10.1385/0-89603-274-4:225. [DOI] [PubMed] [Google Scholar]
  8. Francis S. E., Gluzman I. Y., Oksman A., Knickerbocker A., Mueller R., Bryant M. L., Sherman D. R., Russell D. G., Goldberg D. E. Molecular characterization and inhibition of a Plasmodium falciparum aspartic hemoglobinase. EMBO J. 1994 Jan 15;13(2):306–317. doi: 10.1002/j.1460-2075.1994.tb06263.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gluzman I. Y., Francis S. E., Oksman A., Smith C. E., Duffin K. L., Goldberg D. E. Order and specificity of the Plasmodium falciparum hemoglobin degradation pathway. J Clin Invest. 1994 Apr;93(4):1602–1608. doi: 10.1172/JCI117140. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Goldberg D. E., Slater A. F., Beavis R., Chait B., Cerami A., Henderson G. B. Hemoglobin degradation in the human malaria pathogen Plasmodium falciparum: a catabolic pathway initiated by a specific aspartic protease. J Exp Med. 1991 Apr 1;173(4):961–969. doi: 10.1084/jem.173.4.961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Henderson P. J. A linear equation that describes the steady-state kinetics of enzymes and subcellular particles interacting with tightly bound inhibitors. Biochem J. 1972 Apr;127(2):321–333. doi: 10.1042/bj1270321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ho S. N., Hunt H. D., Horton R. M., Pullen J. K., Pease L. R. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene. 1989 Apr 15;77(1):51–59. doi: 10.1016/0378-1119(89)90358-2. [DOI] [PubMed] [Google Scholar]
  13. Leatherbarrow R. J., Fersht A. R., Winter G. Transition-state stabilization in the mechanism of tyrosyl-tRNA synthetase revealed by protein engineering. Proc Natl Acad Sci U S A. 1985 Dec;82(23):7840–7844. doi: 10.1073/pnas.82.23.7840. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lowther W. T., Majer P., Dunn B. M. Engineering the substrate specificity of rhizopuspepsin: the role of Asp 77 of fungal aspartic proteinases in facilitating the cleavage of oligopeptide substrates with lysine in P1. Protein Sci. 1995 Apr;4(4):689–702. doi: 10.1002/pro.5560040409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Pohl J., Dunn B. M. Secondary enzyme-substrate interactions: kinetic evidence for ionic interactions between substrate side chains and the pepsin active site. Biochemistry. 1988 Jun 28;27(13):4827–4834. doi: 10.1021/bi00413a037. [DOI] [PubMed] [Google Scholar]
  16. Powers J. C., Harley A. D., Myers D. V. Subsite specificity of porcine pepsin. Adv Exp Med Biol. 1977;95:141–157. doi: 10.1007/978-1-4757-0719-9_9. [DOI] [PubMed] [Google Scholar]
  17. Scarborough P. E., Dunn B. M. Redesign of the substrate specificity of human cathepsin D: the dominant role of position 287 in the S2 subsite. Protein Eng. 1994 Apr;7(4):495–502. doi: 10.1093/protein/7.4.495. [DOI] [PubMed] [Google Scholar]
  18. Scarborough P. E., Guruprasad K., Topham C., Richo G. R., Conner G. E., Blundell T. L., Dunn B. M. Exploration of subsite binding specificity of human cathepsin D through kinetics and rule-based molecular modeling. Protein Sci. 1993 Feb;2(2):264–276. doi: 10.1002/pro.5560020215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Schechter I., Berger A. On the size of the active site in proteases. I. Papain. Biochem Biophys Res Commun. 1967 Apr 20;27(2):157–162. doi: 10.1016/s0006-291x(67)80055-x. [DOI] [PubMed] [Google Scholar]
  20. Shintani T., Ichishima E. Primary structure of aspergillopepsin I deduced from nucleotide sequence of the gene and aspartic acid-76 is an essential active site of the enzyme for trypsinogen activation. Biochim Biophys Acta. 1994 Feb 16;1204(2):257–264. doi: 10.1016/0167-4838(94)90016-7. [DOI] [PubMed] [Google Scholar]
  21. Shintani T., Nomura K., Ichishima E. Engineering of porcine pepsin. Alteration of S1 substrate specificity of pepsin to those of fungal aspartic proteinases by site-directed mutagenesis. J Biol Chem. 1997 Jul 25;272(30):18855–18861. doi: 10.1074/jbc.272.30.18855. [DOI] [PubMed] [Google Scholar]
  22. Silva A. M., Lee A. Y., Gulnik S. V., Maier P., Collins J., Bhat T. N., Collins P. J., Cachau R. E., Luker K. E., Gluzman I. Y. Structure and inhibition of plasmepsin II, a hemoglobin-degrading enzyme from Plasmodium falciparum. Proc Natl Acad Sci U S A. 1996 Sep 17;93(19):10034–10039. doi: 10.1073/pnas.93.19.10034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Suguna K., Padlan E. A., Smith C. W., Carlson W. D., Davies D. R. Binding of a reduced peptide inhibitor to the aspartic proteinase from Rhizopus chinensis: implications for a mechanism of action. Proc Natl Acad Sci U S A. 1987 Oct;84(20):7009–7013. doi: 10.1073/pnas.84.20.7009. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES