Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1999 Oct;8(10):2041–2054. doi: 10.1110/ps.8.10.2041

Backbone dynamics of the human CC chemokine eotaxin: fast motions, slow motions, and implications for receptor binding.

M P Crump 1, L Spyracopoulos 1, P Lavigne 1, K S Kim 1, I Clark-lewis 1, B D Sykes 1
PMCID: PMC2144122  PMID: 10548050

Abstract

Eotaxin is a member of the chemokine family of about 40 proteins that induce cell migration. Eotaxin binds the CC chemokine receptor CCR3 that is highly expressed by eosinophils, and it is considered important in the pathology of chronic respiratory disorders such as asthma. The high resolution structure of eotaxin is known. The 74 amino acid protein has two disulfide bridges and shows a typical chemokine fold comprised of a core of three antiparallel beta-strands and an overlying alpha-helix. In this paper, we report the backbone dynamics of eotaxin determined through 15N-T1, T2, and [1H]-15N nuclear Overhauser effect heteronuclear multidimensional NMR experiments. This is the first extensive study of the dynamics of a chemokine derived from 600, 500, and 300 MHz NMR field strengths. From the T1, T2, and NOE relaxation data, parameters that describe the internal motions of eotaxin were derived using the Lipari-Szabo model free analysis. The most ordered regions of the protein correspond to the known secondary structure elements. However, surrounding the core, the regions known to be functionally important in chemokines show a range of motions on varying timescales. These include extensive subnanosecond to picosecond motions in the N-terminus, C-terminus, and the N-loop succeeding the disulfides. Analysis of rotational diffusion anisotropy of eotaxin and chemical exchange terms at multiple fields also allowed the confident identification of slow conformational exchange through the "30s" loop, disulfides, and adjacent residues. In addition, we show that these motions may be attenuated in the dimeric form of a synthetic eotaxin. The structure and dynamical basis for eotaxin receptor binding is discussed in light of the dynamics data.

Full Text

The Full Text of this article is available as a PDF (859.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baggiolini M., Dewald B., Moser B. Human chemokines: an update. Annu Rev Immunol. 1997;15:675–705. doi: 10.1146/annurev.immunol.15.1.675. [DOI] [PubMed] [Google Scholar]
  2. Clark-Lewis I., Dewald B., Loetscher M., Moser B., Baggiolini M. Structural requirements for interleukin-8 function identified by design of analogs and CXC chemokine hybrids. J Biol Chem. 1994 Jun 10;269(23):16075–16081. [PubMed] [Google Scholar]
  3. Clark-Lewis I., Kim K. S., Rajarathnam K., Gong J. H., Dewald B., Moser B., Baggiolini M., Sykes B. D. Structure-activity relationships of chemokines. J Leukoc Biol. 1995 May;57(5):703–711. doi: 10.1002/jlb.57.5.703. [DOI] [PubMed] [Google Scholar]
  4. Clore G. M., Driscoll P. C., Wingfield P. T., Gronenborn A. M. Analysis of the backbone dynamics of interleukin-1 beta using two-dimensional inverse detected heteronuclear 15N-1H NMR spectroscopy. Biochemistry. 1990 Aug 14;29(32):7387–7401. doi: 10.1021/bi00484a006. [DOI] [PubMed] [Google Scholar]
  5. Corrigan C. J., Kay A. B. T cells and eosinophils in the pathogenesis of asthma. Immunol Today. 1992 Dec;13(12):501–507. doi: 10.1016/0167-5699(92)90026-4. [DOI] [PubMed] [Google Scholar]
  6. Crump M. P., Gong J. H., Loetscher P., Rajarathnam K., Amara A., Arenzana-Seisdedos F., Virelizier J. L., Baggiolini M., Sykes B. D., Clark-Lewis I. Solution structure and basis for functional activity of stromal cell-derived factor-1; dissociation of CXCR4 activation from binding and inhibition of HIV-1. EMBO J. 1997 Dec 1;16(23):6996–7007. doi: 10.1093/emboj/16.23.6996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Crump M. P., Rajarathnam K., Kim K. S., Clark-Lewis I., Sykes B. D. Solution structure of eotaxin, a chemokine that selectively recruits eosinophils in allergic inflammation. J Biol Chem. 1998 Aug 28;273(35):22471–22479. doi: 10.1074/jbc.273.35.22471. [DOI] [PubMed] [Google Scholar]
  8. Delaglio F., Grzesiek S., Vuister G. W., Zhu G., Pfeifer J., Bax A. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR. 1995 Nov;6(3):277–293. doi: 10.1007/BF00197809. [DOI] [PubMed] [Google Scholar]
  9. Farrow N. A., Muhandiram R., Singer A. U., Pascal S. M., Kay C. M., Gish G., Shoelson S. E., Pawson T., Forman-Kay J. D., Kay L. E. Backbone dynamics of a free and phosphopeptide-complexed Src homology 2 domain studied by 15N NMR relaxation. Biochemistry. 1994 May 17;33(19):5984–6003. doi: 10.1021/bi00185a040. [DOI] [PubMed] [Google Scholar]
  10. Farrow N. A., Zhang O., Forman-Kay J. D., Kay L. E. Comparison of the backbone dynamics of a folded and an unfolded SH3 domain existing in equilibrium in aqueous buffer. Biochemistry. 1995 Jan 24;34(3):868–878. doi: 10.1021/bi00003a021. [DOI] [PubMed] [Google Scholar]
  11. Gagné S. M., Tsuda S., Spyracopoulos L., Kay L. E., Sykes B. D. Backbone and methyl dynamics of the regulatory domain of troponin C: anisotropic rotational diffusion and contribution of conformational entropy to calcium affinity. J Mol Biol. 1998 May 8;278(3):667–686. doi: 10.1006/jmbi.1998.1723. [DOI] [PubMed] [Google Scholar]
  12. Gong J. H., Uguccioni M., Dewald B., Baggiolini M., Clark-Lewis I. RANTES and MCP-3 antagonists bind multiple chemokine receptors. J Biol Chem. 1996 May 3;271(18):10521–10527. doi: 10.1074/jbc.271.18.10521. [DOI] [PubMed] [Google Scholar]
  13. Grasberger B. L., Gronenborn A. M., Clore G. M. Analysis of the backbone dynamics of interleukin-8 by 15N relaxation measurements. J Mol Biol. 1993 Mar 20;230(2):364–372. doi: 10.1006/jmbi.1993.1152. [DOI] [PubMed] [Google Scholar]
  14. Griffiths-Johnson D. A., Collins P. D., Rossi A. G., Jose P. J., Williams T. J. The chemokine, eotaxin, activates guinea-pig eosinophils in vitro and causes their accumulation into the lung in vivo. Biochem Biophys Res Commun. 1993 Dec 30;197(3):1167–1172. doi: 10.1006/bbrc.1993.2599. [DOI] [PubMed] [Google Scholar]
  15. Hyberts S. G., Goldberg M. S., Havel T. F., Wagner G. The solution structure of eglin c based on measurements of many NOEs and coupling constants and its comparison with X-ray structures. Protein Sci. 1992 Jun;1(6):736–751. doi: 10.1002/pro.5560010606. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Jose P. J., Griffiths-Johnson D. A., Collins P. D., Walsh D. T., Moqbel R., Totty N. F., Truong O., Hsuan J. J., Williams T. J. Eotaxin: a potent eosinophil chemoattractant cytokine detected in a guinea pig model of allergic airways inflammation. J Exp Med. 1994 Mar 1;179(3):881–887. doi: 10.1084/jem.179.3.881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kay L. E., Torchia D. A., Bax A. Backbone dynamics of proteins as studied by 15N inverse detected heteronuclear NMR spectroscopy: application to staphylococcal nuclease. Biochemistry. 1989 Nov 14;28(23):8972–8979. doi: 10.1021/bi00449a003. [DOI] [PubMed] [Google Scholar]
  18. Kim K. S., Rajarathnam K., Clark-Lewis I., Sykes B. D. Structural characterization of a monomeric chemokine: monocyte chemoattractant protein-3. FEBS Lett. 1996 Oct 21;395(2-3):277–282. doi: 10.1016/0014-5793(96)01024-1. [DOI] [PubMed] [Google Scholar]
  19. Kitaura M., Nakajima T., Imai T., Harada S., Combadiere C., Tiffany H. L., Murphy P. M., Yoshie O. Molecular cloning of human eotaxin, an eosinophil-selective CC chemokine, and identification of a specific eosinophil eotaxin receptor, CC chemokine receptor 3. J Biol Chem. 1996 Mar 29;271(13):7725–7730. doi: 10.1074/jbc.271.13.7725. [DOI] [PubMed] [Google Scholar]
  20. Kördel J., Skelton N. J., Akke M., Palmer A. G., 3rd, Chazin W. J. Backbone dynamics of calcium-loaded calbindin D9k studied by two-dimensional proton-detected 15N NMR spectroscopy. Biochemistry. 1992 May 26;31(20):4856–4866. doi: 10.1021/bi00135a017. [DOI] [PubMed] [Google Scholar]
  21. Laurence J. S., LiWang A. C., LiWang P. J. Effect of N-terminal truncation and solution conditions on chemokine dimer stability: nuclear magnetic resonance structural analysis of macrophage inflammatory protein 1 beta mutants. Biochemistry. 1998 Jun 30;37(26):9346–9354. doi: 10.1021/bi980329l. [DOI] [PubMed] [Google Scholar]
  22. LiWang A. C., Cao J. J., Zheng H., Lu Z., Peiper S. C., LiWang P. J. Dynamics study on the anti-human immunodeficiency virus chemokine viral macrophage-inflammatory protein-II (VMIP-II) reveals a fully monomeric protein. Biochemistry. 1999 Jan 5;38(1):442–453. doi: 10.1021/bi9812726. [DOI] [PubMed] [Google Scholar]
  23. Lowman H. B., Slagle P. H., DeForge L. E., Wirth C. M., Gillece-Castro B. L., Bourell J. H., Fairbrother W. J. Exchanging interleukin-8 and melanoma growth-stimulating activity receptor binding specificities. J Biol Chem. 1996 Jun 14;271(24):14344–14352. doi: 10.1074/jbc.271.24.14344. [DOI] [PubMed] [Google Scholar]
  24. Lubkowski J., Bujacz G., Boqué L., Domaille P. J., Handel T. M., Wlodawer A. The structure of MCP-1 in two crystal forms provides a rare example of variable quaternary interactions. Nat Struct Biol. 1997 Jan;4(1):64–69. doi: 10.1038/nsb0197-64. [DOI] [PubMed] [Google Scholar]
  25. Mizoue L. S., Bazan J. F., Johnson E. C., Handel T. M. Solution structure and dynamics of the CX3C chemokine domain of fractalkine and its interaction with an N-terminal fragment of CX3CR1. Biochemistry. 1999 Feb 2;38(5):1402–1414. doi: 10.1021/bi9820614. [DOI] [PubMed] [Google Scholar]
  26. Pakianathan D. R., Kuta E. G., Artis D. R., Skelton N. J., Hébert C. A. Distinct but overlapping epitopes for the interaction of a CC-chemokine with CCR1, CCR3 and CCR5. Biochemistry. 1997 Aug 12;36(32):9642–9648. doi: 10.1021/bi970593z. [DOI] [PubMed] [Google Scholar]
  27. Palmer A. G., 3rd Dynamic properties of proteins from NMR spectroscopy. Curr Opin Biotechnol. 1993 Aug;4(4):385–391. doi: 10.1016/0958-1669(93)90002-e. [DOI] [PubMed] [Google Scholar]
  28. Ponath P. D., Qin S., Ringler D. J., Clark-Lewis I., Wang J., Kassam N., Smith H., Shi X., Gonzalo J. A., Newman W. Cloning of the human eosinophil chemoattractant, eotaxin. Expression, receptor binding, and functional properties suggest a mechanism for the selective recruitment of eosinophils. J Clin Invest. 1996 Feb 1;97(3):604–612. doi: 10.1172/JCI118456. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Rajarathnam K., Sykes B. D., Dewald B., Baggiolini M., Clark-Lewis I. Disulfide bridges in interleukin-8 probed using non-natural disulfide analogues: dissociation of roles in structure from function. Biochemistry. 1999 Jun 15;38(24):7653–7658. doi: 10.1021/bi990033v. [DOI] [PubMed] [Google Scholar]
  30. Rajarathnam K., Sykes B. D., Kay C. M., Dewald B., Geiser T., Baggiolini M., Clark-Lewis I. Neutrophil activation by monomeric interleukin-8. Science. 1994 Apr 1;264(5155):90–92. doi: 10.1126/science.8140420. [DOI] [PubMed] [Google Scholar]
  31. Sallusto F., Mackay C. R., Lanzavecchia A. Selective expression of the eotaxin receptor CCR3 by human T helper 2 cells. Science. 1997 Sep 26;277(5334):2005–2007. doi: 10.1126/science.277.5334.2005. [DOI] [PubMed] [Google Scholar]
  32. Schraufstätter I. U., Ma M., Oades Z. G., Barritt D. S., Cochrane C. G. The role of Tyr13 and Lys15 of interleukin-8 in the high affinity interaction with the interleukin-8 receptor type A. J Biol Chem. 1995 May 5;270(18):10428–10431. doi: 10.1074/jbc.270.18.10428. [DOI] [PubMed] [Google Scholar]
  33. Skelton N. J., Quan C., Reilly D., Lowman H. Structure of a CXC chemokine-receptor fragment in complex with interleukin-8. Structure. 1999 Feb 15;7(2):157–168. doi: 10.1016/S0969-2126(99)80022-7. [DOI] [PubMed] [Google Scholar]
  34. Szyperski T., Luginbühl P., Otting G., Güntert P., Wüthrich K. Protein dynamics studied by rotating frame 15N spin relaxation times. J Biomol NMR. 1993 Mar;3(2):151–164. doi: 10.1007/BF00178259. [DOI] [PubMed] [Google Scholar]
  35. Tjandra N., Wingfield P., Stahl S., Bax A. Anisotropic rotational diffusion of perdeuterated HIV protease from 15N NMR relaxation measurements at two magnetic fields. J Biomol NMR. 1996 Oct;8(3):273–284. doi: 10.1007/BF00410326. [DOI] [PubMed] [Google Scholar]
  36. Yang D., Kay L. E. Contributions to conformational entropy arising from bond vector fluctuations measured from NMR-derived order parameters: application to protein folding. J Mol Biol. 1996 Oct 25;263(2):369–382. doi: 10.1006/jmbi.1996.0581. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES