Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1999 Oct;8(10):2055–2064. doi: 10.1110/ps.8.10.2055

Probing the conformation of a human apolipoprotein C-1 by amino acid substitutions and trimethylamine-N-oxide.

O Gursky 1
PMCID: PMC2144123  PMID: 10548051

Abstract

To test, at the level of individual amino acids, the conformation of an exchangeable apolipoprotein in aqueous solution and in the presence of an osmolyte trimethylamine-N-oxide (TMAO), six synthetic peptide analogues of human apolipoprotein C-1 (apoC-1, 57 residues) containing point mutations in the predicted alpha-helical regions were analyzed by circular dichroism (CD). The CD spectra and the melting curves of the monomeric wild-type and plasma apoC-1 in neutral low-salt solutions superimpose, indicating 31 +/- 4% alpha-helical structure at 22 degrees C that melts reversibly with T(m,WT) = 50 +/- 2 degrees C and van't Hoff enthalpy deltaH(v,WT)(Tm) = 18 +/- 2 kcal/mol. G15A substitution leads to an increased alpha-helical content of 42 +/- 4% and an increased T(m,G15A) = 57 +/- 2 degrees C, which corresponds to stabilization by delta deltaG(app) = +0.4 +/- 1.5 kcal/mol. G15P mutant has approximately 20% alpha-helical content at 22 degrees C and unfolds with low cooperativity upon heating to 90 degrees C. R23P and T45P mutants are fully unfolded at 0-90 degrees C. In contrast, Q31P mutation leads to no destabilization or unfolding. Consequently, the R23 and T45 locations are essential for the stability of the cooperative alpha-helical unit in apoC-1 monomer, G15 is peripheral to it, and Q31 is located in a nonhelical linker region. Our results suggest that Pro mutagenesis coupled with CD provides a tool for assigning the secondary structure to protein groups, which should be useful for other self-associating proteins that are not amenable to NMR structural analysis in aqueous solution. TMAO induces a reversible cooperative coil-to-helix transition in apoC-1, with the maximal alpha-helical content reaching 74%. Comparison with the maximal alpha-helical content of 73% observed in lipid-bound apoC-1 suggests that the TMAO-stabilized secondary structure resembles the functional lipid-bound apolipoprotein conformation.

Full Text

The Full Text of this article is available as a PDF (359.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anantharamaiah G. M., Hughes T. A., Iqbal M., Gawish A., Neame P. J., Medley M. F., Segrest J. P. Effect of oxidation on the properties of apolipoproteins A-I and A-II. J Lipid Res. 1988 Mar;29(3):309–318. [PubMed] [Google Scholar]
  2. Atkinson D., Small D. M. Recombinant lipoproteins: implications for structure and assembly of native lipoproteins. Annu Rev Biophys Biophys Chem. 1986;15:403–456. doi: 10.1146/annurev.bb.15.060186.002155. [DOI] [PubMed] [Google Scholar]
  3. Baskakov I., Bolen D. W. Forcing thermodynamically unfolded proteins to fold. J Biol Chem. 1998 Feb 27;273(9):4831–4834. doi: 10.1074/jbc.273.9.4831. [DOI] [PubMed] [Google Scholar]
  4. Becktel W. J., Schellman J. A. Protein stability curves. Biopolymers. 1987 Nov;26(11):1859–1877. doi: 10.1002/bip.360261104. [DOI] [PubMed] [Google Scholar]
  5. Borhani D. W., Rogers D. P., Engler J. A., Brouillette C. G. Crystal structure of truncated human apolipoprotein A-I suggests a lipid-bound conformation. Proc Natl Acad Sci U S A. 1997 Nov 11;94(23):12291–12296. doi: 10.1073/pnas.94.23.12291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Breiter D. R., Kanost M. R., Benning M. M., Wesenberg G., Law J. H., Wells M. A., Rayment I., Holden H. M. Molecular structure of an apolipoprotein determined at 2.5-A resolution. Biochemistry. 1991 Jan 22;30(3):603–608. doi: 10.1021/bi00217a002. [DOI] [PubMed] [Google Scholar]
  7. Bruch M. D., Dhingra M. M., Gierasch L. M. Side chain-backbone hydrogen bonding contributes to helix stability in peptides derived from an alpha-helical region of carboxypeptidase A. Proteins. 1991;10(2):130–139. doi: 10.1002/prot.340100206. [DOI] [PubMed] [Google Scholar]
  8. Chakrabartty A., Schellman J. A., Baldwin R. L. Large differences in the helix propensities of alanine and glycine. Nature. 1991 Jun 13;351(6327):586–588. doi: 10.1038/351586a0. [DOI] [PubMed] [Google Scholar]
  9. D'Aquino J. A., Gómez J., Hilser V. J., Lee K. H., Amzel L. M., Freire E. The magnitude of the backbone conformational entropy change in protein folding. Proteins. 1996 Jun;25(2):143–156. doi: 10.1002/(SICI)1097-0134(199606)25:2<143::AID-PROT1>3.0.CO;2-J. [DOI] [PubMed] [Google Scholar]
  10. Gursky O., Atkinson D. Thermal unfolding of human high-density apolipoprotein A-1: implications for a lipid-free molten globular state. Proc Natl Acad Sci U S A. 1996 Apr 2;93(7):2991–2995. doi: 10.1073/pnas.93.7.2991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gursky O., Atkinson D. Thermodynamic analysis of human plasma apolipoprotein C-1: high-temperature unfolding and low-temperature oligomer dissociation. Biochemistry. 1998 Feb 3;37(5):1283–1291. doi: 10.1021/bi971801q. [DOI] [PubMed] [Google Scholar]
  12. Hennessey J. P., Jr, Johnson W. C., Jr Information content in the circular dichroism of proteins. Biochemistry. 1981 Mar 3;20(5):1085–1094. doi: 10.1021/bi00508a007. [DOI] [PubMed] [Google Scholar]
  13. Hirota N., Mizuno K., Goto Y. Group additive contributions to the alcohol-induced alpha-helix formation of melittin: implication for the mechanism of the alcohol effects on proteins. J Mol Biol. 1998 Jan 16;275(2):365–378. doi: 10.1006/jmbi.1997.1468. [DOI] [PubMed] [Google Scholar]
  14. Jackson R. L., Morrisett J. D., Sparrow J. T., Segrest J. P., Pownall H. J., Smith L. C., Hoff H. F., Gotto A. M., Jr The interaction of apolipoprotein-serine with phosphatidylcholine. J Biol Chem. 1974 Aug 25;249(16):5314–5320. [PubMed] [Google Scholar]
  15. Mao D., Wallace B. A. Differential light scattering and absorption flattening optical effects are minimal in the circular dichroism spectra of small unilamellar vesicles. Biochemistry. 1984 Jun 5;23(12):2667–2673. doi: 10.1021/bi00307a020. [DOI] [PubMed] [Google Scholar]
  16. Markwell M. A., Haas S. M., Bieber L. L., Tolbert N. E. A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem. 1978 Jun 15;87(1):206–210. doi: 10.1016/0003-2697(78)90586-9. [DOI] [PubMed] [Google Scholar]
  17. Myers J. K., Pace C. N., Scholtz J. M. A direct comparison of helix propensity in proteins and peptides. Proc Natl Acad Sci U S A. 1997 Apr 1;94(7):2833–2837. doi: 10.1073/pnas.94.7.2833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Osborne J. C., Jr, Bronzert T. J., Brewer H. B., Jr Self-association of apo-C-I from the human high density lipoprotein complex. J Biol Chem. 1977 Aug 25;252(16):5756–5760. [PubMed] [Google Scholar]
  19. Osborne J. C., Jr, Lee N. S., Powell G. M. Solution properties of apolipoproteins. Methods Enzymol. 1986;128:375–387. doi: 10.1016/0076-6879(86)28081-7. [DOI] [PubMed] [Google Scholar]
  20. Pace C. N. Determination and analysis of urea and guanidine hydrochloride denaturation curves. Methods Enzymol. 1986;131:266–280. doi: 10.1016/0076-6879(86)31045-0. [DOI] [PubMed] [Google Scholar]
  21. Pownall H. J., Hsu F. J., Rosseneu M., Peeters H., Gotto A. M., Jackson R. L. Thermodynamics of lipid protein associations. Thermodynamics of helix formation in the association of high density apolipoprotein A-I (apoA-I) to dimyristoyl phosphatidylcholine. Biochim Biophys Acta. 1977 Aug 24;488(2):190–197. doi: 10.1016/0005-2760(77)90176-x. [DOI] [PubMed] [Google Scholar]
  22. Privalov P. L. Stability of proteins. Proteins which do not present a single cooperative system. Adv Protein Chem. 1982;35:1–104. [PubMed] [Google Scholar]
  23. Privalov P. L., Tiktopulo E. I., Venyaminov SYu, Griko YuV, Makhatadze G. I., Khechinashvili N. N. Heat capacity and conformation of proteins in the denatured state. J Mol Biol. 1989 Feb 20;205(4):737–750. doi: 10.1016/0022-2836(89)90318-5. [DOI] [PubMed] [Google Scholar]
  24. Robertson A. D., Baldwin R. L. Hydrogen exchange in thermally denatured ribonuclease A. Biochemistry. 1991 Oct 15;30(41):9907–9914. doi: 10.1021/bi00105a014. [DOI] [PubMed] [Google Scholar]
  25. Rogers D. P., Roberts L. M., Lebowitz J., Engler J. A., Brouillette C. G. Structural analysis of apolipoprotein A-I: effects of amino- and carboxy-terminal deletions on the lipid-free structure. Biochemistry. 1998 Jan 20;37(3):945–955. doi: 10.1021/bi9713512. [DOI] [PubMed] [Google Scholar]
  26. Rozek A., Buchko G. W., Cushley R. J. Conformation of two peptides corresponding to human apolipoprotein C-I residues 7-24 and 35-53 in the presence of sodium dodecyl sulfate by CD and NMR spectroscopy. Biochemistry. 1995 Jun 6;34(22):7401–7408. [PubMed] [Google Scholar]
  27. Rozek A., Buchko G. W., Kanda P., Cushley R. J. Conformational studies of the N-terminal lipid-associating domain of human apolipoprotein C-I by CD and 1H NMR spectroscopy. Protein Sci. 1997 Sep;6(9):1858–1868. doi: 10.1002/pro.5560060906. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Rozek A., Sparrow J. T., Weisgraber K. H., Cushley R. J. Sequence-specific 1H NMR resonance assignments and secondary structure of human apolipoprotein C-I in the presence of sodium dodecyl sulfate. Biochem Cell Biol. 1998;76(2-3):267–275. doi: 10.1139/bcb-76-2-3-267. [DOI] [PubMed] [Google Scholar]
  29. Santoro M. M., Bolen D. W. Unfolding free energy changes determined by the linear extrapolation method. 1. Unfolding of phenylmethanesulfonyl alpha-chymotrypsin using different denaturants. Biochemistry. 1988 Oct 18;27(21):8063–8068. doi: 10.1021/bi00421a014. [DOI] [PubMed] [Google Scholar]
  30. Scholtz J. M., Marqusee S., Baldwin R. L., York E. J., Stewart J. M., Santoro M., Bolen D. W. Calorimetric determination of the enthalpy change for the alpha-helix to coil transition of an alanine peptide in water. Proc Natl Acad Sci U S A. 1991 Apr 1;88(7):2854–2858. doi: 10.1073/pnas.88.7.2854. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Schulman B. A., Kim P. S. Proline scanning mutagenesis of a molten globule reveals non-cooperative formation of a protein's overall topology. Nat Struct Biol. 1996 Aug;3(8):682–687. doi: 10.1038/nsb0896-682. [DOI] [PubMed] [Google Scholar]
  32. Segrest J. P., De Loof H., Dohlman J. G., Brouillette C. G., Anantharamaiah G. M. Amphipathic helix motif: classes and properties. Proteins. 1990;8(2):103–117. doi: 10.1002/prot.340080202. [DOI] [PubMed] [Google Scholar]
  33. Segrest J. P., Jones M. K., De Loof H., Brouillette C. G., Venkatachalapathi Y. V., Anantharamaiah G. M. The amphipathic helix in the exchangeable apolipoproteins: a review of secondary structure and function. J Lipid Res. 1992 Feb;33(2):141–166. [PubMed] [Google Scholar]
  34. Sehayek E., Eisenberg S. Mechanisms of inhibition by apolipoprotein C of apolipoprotein E-dependent cellular metabolism of human triglyceride-rich lipoproteins through the low density lipoprotein receptor pathway. J Biol Chem. 1991 Sep 25;266(27):18259–18267. [PubMed] [Google Scholar]
  35. Shortle D. Probing the determinants of protein folding and stability with amino acid substitutions. J Biol Chem. 1989 Apr 5;264(10):5315–5318. [PubMed] [Google Scholar]
  36. Sigler G. F., Soutar A. K., Smith L. C., Gotto A. M., Jr, Sparrow J. T. The solid phase synthesis of a protein activator for lecithin-cholesterol acyltransferase corresponding to human plasma apoC-I. Proc Natl Acad Sci U S A. 1976 May;73(5):1422–1426. doi: 10.1073/pnas.73.5.1422. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Steyrer E., Kostner G. M. Activation of lecithin-cholesterol acyltransferase by apolipoprotein D: comparison of proteoliposomes containing apolipoprotein D, A-I or C-I. Biochim Biophys Acta. 1988 Feb 19;958(3):484–491. doi: 10.1016/0005-2760(88)90235-4. [DOI] [PubMed] [Google Scholar]
  38. Wang A., Bolen D. W. A naturally occurring protective system in urea-rich cells: mechanism of osmolyte protection of proteins against urea denaturation. Biochemistry. 1997 Jul 29;36(30):9101–9108. doi: 10.1021/bi970247h. [DOI] [PubMed] [Google Scholar]
  39. Wang G., Treleaven W. D., Cushley R. J. Conformation of human serum apolipoprotein A-I(166-185) in the presence of sodium dodecyl sulfate or dodecylphosphocholine by 1H-NMR and CD. Evidence for specific peptide-SDS interactions. Biochim Biophys Acta. 1996 Jun 11;1301(3):174–184. doi: 10.1016/0005-2760(96)00037-9. [DOI] [PubMed] [Google Scholar]
  40. Weisgraber K. H., Mahley R. W., Kowal R. C., Herz J., Goldstein J. L., Brown M. S. Apolipoprotein C-I modulates the interaction of apolipoprotein E with beta-migrating very low density lipoproteins (beta-VLDL) and inhibits binding of beta-VLDL to low density lipoprotein receptor-related protein. J Biol Chem. 1990 Dec 25;265(36):22453–22459. [PubMed] [Google Scholar]
  41. Weisgraber K. H., Newhouse Y. M., McPherson A. Crystallization and preliminary X-ray analysis of human plasma apolipoprotein C-I. J Mol Biol. 1994 Feb 11;236(1):382–384. doi: 10.1006/jmbi.1994.1146. [DOI] [PubMed] [Google Scholar]
  42. Wilson C., Wardell M. R., Weisgraber K. H., Mahley R. W., Agard D. A. Three-dimensional structure of the LDL receptor-binding domain of human apolipoprotein E. Science. 1991 Jun 28;252(5014):1817–1822. doi: 10.1126/science.2063194. [DOI] [PubMed] [Google Scholar]
  43. Windler E., Havel R. J. Inhibitory effects of C apolipoproteins from rats and humans on the uptake of triglyceride-rich lipoproteins and their remnants by the perfused rat liver. J Lipid Res. 1985 May;26(5):556–565. [PubMed] [Google Scholar]
  44. Yancey P. H., Clark M. E., Hand S. C., Bowlus R. D., Somero G. N. Living with water stress: evolution of osmolyte systems. Science. 1982 Sep 24;217(4566):1214–1222. doi: 10.1126/science.7112124. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES