Abstract
Recent studies have pointed out the important role of local water structures in protein conformational stability. Here, we present an accurate and computationally effective way to estimate the free energy contribution of the simplest water structure motif--the water bridge. Based on the combination of empirical parameters for accessible protein surface area and the explicit consideration of all possible water bridges with the protein, we introduce an improved protein solvation model. We find that accounting for water bridge formation in our model is essential to understand the conformational behavior of polypeptides in water. The model formulation, in fact, does not depend on the polypeptide nature of the solute and is therefore applicable to other flexible biomolecules (i.e., DNAs, RNAs, polysaccharides, etc.).
Full Text
The Full Text of this article is available as a PDF (1.7 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abagyan R. A., Mazur A. K. New methodology for computer-aided modelling of biomolecular structure and dynamics. 2. Local deformations and cycles. J Biomol Struct Dyn. 1989 Feb;6(4):833–845. doi: 10.1080/07391102.1989.10507740. [DOI] [PubMed] [Google Scholar]
- Bonvin A. M., Sunnerhagen M., Otting G., van Gunsteren W. F. Water molecules in DNA recognition II: a molecular dynamics view of the structure and hydration of the trp operator. J Mol Biol. 1998 Oct 2;282(4):859–873. doi: 10.1006/jmbi.1998.2034. [DOI] [PubMed] [Google Scholar]
- Cheng Y. K., Rossky P. J. Surface topography dependence of biomolecular hydrophobic hydration. Nature. 1998 Apr 16;392(6677):696–699. doi: 10.1038/33653. [DOI] [PubMed] [Google Scholar]
- Eisenberg D., McLachlan A. D. Solvation energy in protein folding and binding. Nature. 1986 Jan 16;319(6050):199–203. doi: 10.1038/319199a0. [DOI] [PubMed] [Google Scholar]
- Hummer G., García A. E., Soumpasis D. M. A statistical mechanical description of biomolecular hydration. Faraday Discuss. 1996;(103):175–189. doi: 10.1039/fd9960300175. [DOI] [PubMed] [Google Scholar]
- Israelachvili J., Wennerström H. Role of hydration and water structure in biological and colloidal interactions. Nature. 1996 Jan 18;379(6562):219–225. doi: 10.1038/379219a0. [DOI] [PubMed] [Google Scholar]
- Juffer A. H., Eisenhaber F., Hubbard S. J., Walther D., Argos P. Comparison of atomic solvation parametric sets: applicability and limitations in protein folding and binding. Protein Sci. 1995 Dec;4(12):2499–2509. doi: 10.1002/pro.5560041206. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kovacs H., Mark A. E., van Gunsteren W. F. Solvent structure at a hydrophobic protein surface. Proteins. 1997 Mar;27(3):395–404. doi: 10.1002/(sici)1097-0134(199703)27:3<395::aid-prot7>3.0.co;2-c. [DOI] [PubMed] [Google Scholar]
- Martin T. W., Derewenda Z. S. The name is bond--H bond. Nat Struct Biol. 1999 May;6(5):403–406. doi: 10.1038/8195. [DOI] [PubMed] [Google Scholar]
- Morris A. S., Thanki N., Goodfellow J. M. Hydration of amino acid side chains: dependence on secondary structure. Protein Eng. 1992 Dec;5(8):717–728. doi: 10.1093/protein/5.8.717. [DOI] [PubMed] [Google Scholar]
- Ooi T., Oobatake M., Némethy G., Scheraga H. A. Accessible surface areas as a measure of the thermodynamic parameters of hydration of peptides. Proc Natl Acad Sci U S A. 1987 May;84(10):3086–3090. doi: 10.1073/pnas.84.10.3086. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Otting G., Liepinsh E., Wüthrich K. Protein hydration in aqueous solution. Science. 1991 Nov 15;254(5034):974–980. doi: 10.1126/science.1948083. [DOI] [PubMed] [Google Scholar]
- Serrano L. Comparison between the phi distribution of the amino acids in the protein database and NMR data indicates that amino acids have various phi propensities in the random coil conformation. J Mol Biol. 1995 Nov 24;254(2):322–333. doi: 10.1006/jmbi.1995.0619. [DOI] [PubMed] [Google Scholar]
- Sharp K. A., Honig B. Electrostatic interactions in macromolecules: theory and applications. Annu Rev Biophys Biophys Chem. 1990;19:301–332. doi: 10.1146/annurev.bb.19.060190.001505. [DOI] [PubMed] [Google Scholar]
- Thanki N., Thornton J. M., Goodfellow J. M. Influence of secondary structure on the hydration of serine, threonine and tyrosine residues in proteins. Protein Eng. 1990 May;3(6):495–508. doi: 10.1093/protein/3.6.495. [DOI] [PubMed] [Google Scholar]
- Thanki N., Umrania Y., Thornton J. M., Goodfellow J. M. Analysis of protein main-chain solvation as a function of secondary structure. J Mol Biol. 1991 Sep 20;221(2):669–691. doi: 10.1016/0022-2836(91)80080-e. [DOI] [PubMed] [Google Scholar]
- Warshel A., Papazyan A. Electrostatic effects in macromolecules: fundamental concepts and practical modeling. Curr Opin Struct Biol. 1998 Apr;8(2):211–217. doi: 10.1016/s0959-440x(98)80041-9. [DOI] [PubMed] [Google Scholar]
- Warshel A., Russell S. T. Calculations of electrostatic interactions in biological systems and in solutions. Q Rev Biophys. 1984 Aug;17(3):283–422. doi: 10.1017/s0033583500005333. [DOI] [PubMed] [Google Scholar]
- Williams R. L., Vila J., Perrot G., Scheraga H. A. Empirical solvation models in the context of conformational energy searches: application to bovine pancreatic trypsin inhibitor. Proteins. 1992 Sep;14(1):110–119. doi: 10.1002/prot.340140112. [DOI] [PubMed] [Google Scholar]
- von Freyberg B., Richmond T. J., Braun W. Surface area included in energy refinement of proteins. A comparative study on atomic solvation parameters. J Mol Biol. 1993 Sep 20;233(2):275–292. doi: 10.1006/jmbi.1993.1506. [DOI] [PubMed] [Google Scholar]